文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性纳米颗粒作为 MRI 对比剂。

Magnetic Nanoparticles as MRI Contrast Agents.

机构信息

BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain.

Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.

出版信息

Top Curr Chem (Cham). 2020 May 7;378(3):40. doi: 10.1007/s41061-020-00302-w.


DOI:10.1007/s41061-020-00302-w
PMID:32382832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8203530/
Abstract

Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.

摘要

氧化铁纳米粒子(IONPs)作为磁共振成像(MRI)的对比剂,已经成为一种很有前途的替代物。由于其高生物相容性和优异的磁性能,它们已被广泛研究作为对比剂。此外,通过不同类型的配体(抗体、肽、糖等)对其表面进行功能化的简便性,为进行分子 MRI 开辟了可能性。因此,已经提出了用表皮生长因子受体抗体、短肽(如 RGD)或适体等对氧化铁纳米粒子进行功能化,用于诊断各种类型的癌症,包括乳腺癌、胃癌、结肠癌、肾癌、肝癌或脑癌。除了癌症诊断外,还开发了不同类型的 IONPs 用于其他应用,例如检测脑炎症或早期诊断血栓形成。本综述讨论了用于 MRI 应用的 IONPs 的关键方面,即无机核的合成、使 IONPs 具有生物相容性的功能化过程,以及将其靶向特定组织或细胞的过程,最后是动物模型中的体内研究,特别强调了肿瘤模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/56436a19b949/41061_2020_302_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/3bfab90dc590/41061_2020_302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/c7e63c4a14ea/41061_2020_302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/b9245132ab26/41061_2020_302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/c32659ca3d3a/41061_2020_302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/d29f1e808b15/41061_2020_302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/73716fc8fce3/41061_2020_302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/45aa156d4f7a/41061_2020_302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/ac74be66648c/41061_2020_302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/56436a19b949/41061_2020_302_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/3bfab90dc590/41061_2020_302_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/c7e63c4a14ea/41061_2020_302_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/b9245132ab26/41061_2020_302_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/c32659ca3d3a/41061_2020_302_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/d29f1e808b15/41061_2020_302_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/73716fc8fce3/41061_2020_302_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/45aa156d4f7a/41061_2020_302_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/ac74be66648c/41061_2020_302_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ce0/8203530/56436a19b949/41061_2020_302_Fig9_HTML.jpg

相似文献

[1]
Magnetic Nanoparticles as MRI Contrast Agents.

Top Curr Chem (Cham). 2020-5-7

[2]
Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models.

Contrast Media Mol Imaging. 2018-9-24

[3]
New Insight about Biocompatibility and Biodegradability of Iron Oxide Magnetic Nanoparticles: Stereological and In Vivo MRI Monitor.

Sci Rep. 2019-5-9

[4]
Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging.

ACS Nano. 2018-7-11

[5]
Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers.

Mater Sci Eng C Mater Biol Appl. 2019-10-11

[6]
Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI.

Chem Soc Rev. 2015-10-7

[7]
Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent.

Drug Dev Ind Pharm. 2018-7-4

[8]
Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies.

Adv Colloid Interface Sci. 2017-5-3

[9]
Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia.

Nanomedicine (Lond). 2016-7

[10]
In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody.

Mol Imaging Biol. 2016-12

引用本文的文献

[1]
Influence of Content and Type of Lanthanide on the Structure of LnO-Covered Carbon Nanoflakes: The EPR and XPS Study.

Nanomaterials (Basel). 2025-7-1

[2]
A comprehensive review of using nanomaterials in cancer immunotherapy: Pros and Cons of clinical usage.

3 Biotech. 2025-7

[3]
Hydrophobin-Coated Echogenic Microbubbles for Molecular Targeting of Tumor Cells.

Adv Sci (Weinh). 2025-6

[4]
The Role of Inorganic Nanomaterials in Overcoming Challenges in Colorectal Cancer Diagnosis and Therapy.

Pharmaceutics. 2025-3-25

[5]
Superparamagnetic Nanoparticles with Phosphorescent Complexes as Hybrid Contrast Agents: Integration of MRI and PLIM.

Small Sci. 2024-1-12

[6]
Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment.

Nanomaterials (Basel). 2025-2-10

[7]
Solvothermal synthesis of polyvinyl pyrrolidone encapsulated, amine-functionalized copper ferrite and its use as a magnetic resonance imaging contrast agent.

PLoS One. 2025-2-6

[8]
Nanostructures in Orthopedics: Advancing Diagnostics, Targeted Therapies, and Tissue Regeneration.

Materials (Basel). 2024-12-17

[9]
Amphoteric β-cyclodextrin coated iron oxide magnetic nanoparticles: new insights into synthesis and application in MRI.

Nanoscale Adv. 2024-11-4

[10]
SS-31 modification alleviates ferroptosis induced by superparamagnetic iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes.

Heliyon. 2024-9-27

本文引用的文献

[1]
One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate.

J Mater Chem B. 2014-7-28

[2]
A T/T dual functional iron oxide MRI contrast agent with super stability and low hypersensitivity benefited by ultrahigh carboxyl group density.

J Mater Chem B. 2019-2-25

[3]
Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy.

Acta Biomater. 2020-1-15

[4]
Cu-Doped Extremely Small Iron Oxide Nanoparticles with Large Longitudinal Relaxivity: One-Pot Synthesis and in Vivo Targeted Molecular Imaging.

ACS Omega. 2019-2-6

[5]
Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process.

ACS Omega. 2017-10-26

[6]
Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy.

Chem Commun (Camb). 2019-7-10

[7]
On the issue of transparency and reproducibility in nanomedicine.

Nat Nanotechnol. 2019-7

[8]
Cross-Linked Polystyrene Shells Grown on Iron Oxide Nanoparticles via Surface-Grafted AGET-ATRP in Microemulsion.

Langmuir. 2019-7-2

[9]
Label-Free Fluorescent Poly(amidoamine) Dendrimer for Traceable and Controlled Drug Delivery.

Biomacromolecules. 2019-4-24

[10]
Effect of grafting ratio of poly(propylene imine) dendrimer onto gold nanoparticles on the properties of colloidal hybrids, their DOX loading and release behavior and cytotoxicity.

Colloids Surf B Biointerfaces. 2019-3-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索