Abarca-Cabrera Lucía, Milinovic Olga, Heitler Viktoria, Rühmann Broder, Kudermann Jürgen, Kube Massimo, Dietz Hendrik, Sieber Volker, Berensmeier Sonja, Fraga-García Paula
School of Engineering and Design Department of Energy and Process Engineering Chair of Bioseparation Engineering Technical University of Munich (TUM) Boltzmannstraße 15 85748 Garching Germany.
Chemistry of Biogenic Resources Technical University of Munich (TUM) Campus Straubing Schulgasse 16 94315 Straubing Germany.
Small Sci. 2023 Jul 9;3(9):2300064. doi: 10.1002/smsc.202300064. eCollection 2023 Sep.
Upon their introduction into a biological environment, nanoparticles are spontaneously covered by a variety of biomolecules, forming a (multi)layer called the "biocorona". However, the interaction of small and large molecules with nanosized materials is not fully understood and in complex aqueous systems, even less, limiting their exploitation. The objective is to gain insights into the mass partitioning between the solid and the liquid phases for the most abundant groups of biological molecules in a biotechnological milieu. Herein, the biocorona composition is analyzed after the exposure of bare iron oxide nanoparticles to lysates to evaluate the influence of the environment's pH, temperature, and ionic strength on the adsorption of proteins, lipids, and carbohydrates. Maximum adsorption capacities reach at pH 4.0 and yield 0.47, 0.08, and 0.11 g g for proteins, fatty acids, and carbohydrates, respectively. The increase in ionic strength and temperature of the environment promotes protein adsorption, the decrease in temperature raises fatty acid adsorption, and acidic pHs foster the adsorption of the three types of biomolecules. Abundance of the biomolecules plays a key role in the biocorona content. This approach should lead to further studies on complex systems to modulate the adsorption at the bio-nano interface.
纳米颗粒一旦进入生物环境,就会自发地被各种生物分子覆盖,形成一层称为“生物冠”的(多)层结构。然而,小分子和大分子与纳米材料之间的相互作用尚未完全了解,在复杂的水性体系中更是如此,这限制了它们的应用。目的是深入了解生物技术环境中最丰富的生物分子组在固液相间的质量分配情况。在此,将裸氧化铁纳米颗粒暴露于裂解物后分析生物冠的组成,以评估环境的pH值、温度和离子强度对蛋白质、脂质和碳水化合物吸附的影响。最大吸附容量在pH 4.0时达到,蛋白质、脂肪酸和碳水化合物的吸附量分别为0.47、0.08和0.11 g/g。环境离子强度和温度的升高促进蛋白质吸附,温度降低提高脂肪酸吸附,酸性pH值促进这三种生物分子的吸附。生物分子的丰度在生物冠含量中起关键作用。这种方法应能促使对复杂体系进行进一步研究,以调节生物-纳米界面的吸附作用。