Hu Yi, Wang Yulin, Zhang Meiru, Gao Changkai, Zhao Pu, Zhang Suyan, Zan Zhaoguang, Li Dachao, Fan Zhenzhen
State Key Laboratory of Precision Measurement Technology and Instruments Tianjin University Tianjin 300072 China.
State Key Laboratory of Acoustics Institute of Acoustics Chinese Academy of Sciences Beijing 100190 China.
Small Sci. 2024 Feb 13;4(4):2300146. doi: 10.1002/smsc.202300146. eCollection 2024 Apr.
Cellular rheological properties affect cell function and are reflective of cell status. It is challenging to perform multiplexed single-cell rheology probing with high controllability, particularly for adherent cells. A surface acoustic wave (SAW)-based method is presented for this purpose. The method integrates the potent micromanipulation ability of acoustic waves in a microfluidic chamber with the ability of cell-anchored microbeads to concentrate the acoustic energy to deform the cell. Two strategies are developed for placing a targeted microbead at a desired position on the cell membrane. The power-law rheological dynamics with plastic components are applied to fit the creep (during the mechanical loading) and relaxation (after force removal) responses of the cell. With more than 400 measurements of adherent cells and each with detailed dynamics, a full range of viscoelastic behaviors of cells far beyond the typical rheology of previously reported adherent cells and unexpected negative plastic compliance is observed. The developed method supports in-depth investigations of biomechanics at the cellular and subcellular levels, with considerable potential for extension to mechanical force-based cell function regulation.
细胞流变学特性影响细胞功能,并反映细胞状态。进行具有高可控性的多重单细胞流变学探测具有挑战性,特别是对于贴壁细胞。为此提出了一种基于表面声波(SAW)的方法。该方法将微流控腔室中声波强大的微操纵能力与细胞锚定微珠集中声能使细胞变形的能力相结合。开发了两种策略将靶向微珠放置在细胞膜上的期望位置。应用具有塑性成分的幂律流变动力学来拟合细胞的蠕变(在机械加载期间)和松弛(力去除后)响应。通过对贴壁细胞进行400多次测量且每次测量都有详细的动力学过程,观察到细胞的一系列粘弹性行为,远远超出了先前报道的贴壁细胞的典型流变学范围,并且出现了意外的负塑性柔度。所开发的方法支持在细胞和亚细胞水平上对生物力学进行深入研究,具有扩展到基于机械力的细胞功能调节的巨大潜力。