Han Yu Long, Pegoraro Adrian F, Li Hui, Li Kaifu, Yuan Yuan, Xu Guoqiang, Gu Zichen, Sun Jiawei, Hao Yukun, Gupta Satish Kumar, Li Yiwei, Tang Wenhui, Tang Xiao, Teng Lianghong, Fredberg Jeffrey J, Guo Ming
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Nat Phys. 2020 Jan;16(1):101-108. doi: 10.1038/s41567-019-0680-8. Epub 2019 Oct 21.
Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Using a multicellular mammary cancer organoid model, here we map in three dimensions the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
三维多细胞组织的结构和功能塑造关键取决于细胞物理特性的时空协调,然而,支配这些事件的组织原则及其在疾病中的破坏情况仍知之甚少。利用多细胞乳腺癌类器官模型,我们在此三维绘制了单个细胞的位置、运动和物理特征的时空演变。与类器官核心中的细胞相比,发现类器官外围和侵袭前沿的细胞系统性地更柔软、更大且更具动态性。这些力学变化表明是由通过间隙连接的超细胞流体流动引起的,抑制这种流动会延迟向侵袭性表型的转变。总之,这些发现突出了细胞物理特性的时空协调在组织组织和疾病进展中的作用。