Suppr超能文献

利用深度神经网络估计接受LigaSure手术治疗的晚期痔病患者肛管壁中的Cajal细胞。

Utilisation of Deep Neural Networks for Estimation of Cajal Cells in the Anal Canal Wall of Patients with Advanced Haemorrhoidal Disease Treated by LigaSure Surgery.

作者信息

Fišere Inese, Edelmers Edgars, Svirskis Šimons, Groma Valērija

机构信息

Department of Doctoral Studies, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia.

Surgery Clinic, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia.

出版信息

Cells. 2025 Apr 5;14(7):550. doi: 10.3390/cells14070550.

Abstract

Interstitial cells of Cajal (ICCs) play a key role in gastrointestinal smooth muscle contractions, but their relationship with anal canal function in advanced haemorrhoidal disease (HD) remains poorly understood. This study uses deep neural network (DNN) models to estimate ICC presence and quantity in anal canal tissues affected by HD. Haemorrhoidectomy specimens were collected from patients undergoing surgery with the LigaSure device. A YOLOv11-based machine learning model, trained on 376 immunohistochemical images, automated ICC detection using the CD117 marker, achieving a mean average precision (mAP50) of 92%, with a recall of 86% and precision of 88%. The DNN model accurately identified ICCs in whole-slide images, revealing that one-third of grade III HD patients and 60% of grade IV HD patients had a high ICC density. Preoperatively, pain was reported in 35% of grade III HD patients and 41% of grade IV patients, with a significant reduction following surgery. A significant decrease in bleeding ( < 0.0001) was also noted postoperatively. Notably, patients with postoperative bleeding, diagnosed with stage IV HD, had high ICC density in their anorectal tissues ( = 0.0041), suggesting a potential link between ICC density and HD severity. This AI-driven model, alongside clinical data, may enhance outcome prediction and provide insights into HD pathophysiology.

摘要

Cajal间质细胞(ICCs)在胃肠道平滑肌收缩中起关键作用,但其与晚期痔病(HD)肛管功能的关系仍知之甚少。本研究使用深度神经网络(DNN)模型来估计受HD影响的肛管组织中ICC的存在和数量。从使用LigaSure设备进行手术的患者中收集痔切除术标本。基于YOLOv11的机器学习模型在376张免疫组织化学图像上进行训练,使用CD117标记自动检测ICC,平均精度(mAP50)达到92%,召回率为86%,精度为88%。DNN模型在全切片图像中准确识别出ICC,显示三分之一的III级HD患者和60%的IV级HD患者具有高ICC密度。术前,35%的III级HD患者和41%的IV级患者报告有疼痛,术后疼痛显著减轻。术后出血也显著减少(<0.0001)。值得注意的是,术后出血且诊断为IV期HD的患者,其肛管直肠组织中的ICC密度较高(=0.0041),这表明ICC密度与HD严重程度之间可能存在联系。这种由人工智能驱动的模型与临床数据一起,可能会增强结果预测,并为HD的病理生理学提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60a/11989036/1520e51b4708/cells-14-00550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验