Zhao Hao, Ni Baoxin, Pan Yongyu, Li YuZe, Li Jun, Wang Guoliang, Zou Zhiqing, Jiang Kun, Cheng Qingqing, Zu Lianhai, Yang Hui
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2025 Jul;37(26):e2503221. doi: 10.1002/adma.202503221. Epub 2025 Apr 11.
Atop and multiple adsorbed hydrogen are considered as key intermediates on Pt-group metal for acidic hydrogen evolution reaction (HER), yet the role of bridge hydrogen intermediate (H) is consistently overlooked experimentally. Herein, a Pt atomic chain modified fcc-Ru nanocrystal (Pt-Ru(fcc)) is developed with a co-crystalline structure, featuring H intermediate bonded on the Pt-Ru pair site. Electrons leap from the pair site to H facilitate hydrogen desorption, thus accelerating the Tafel kinetics and ensuring outstanding electrocatalytic performance, with a low overpotential (4.0 mV at 10 mA cm) and high turnover frequency (56.4 H s at 50 mV). Notably, the proton exchange membrane water electrolyzer PEMWE with ultra-low loading of 10 ug cm shows excellent activity (1.61 V at 1.0 A cm) and low average degradation rate (4.0 µV h over 1000 h), significantly outperforming the benchmark Pt/C. Furthermore, the PEMWE-based 80 µm Gore membrane under identical operating conditions requires only 1.54 and 1.58 V to achieve 1.0 and 1.5 A cm. This finding highlights the key role of H at the Pt-Ru interface in obtaining high HER intrinsic activity and underscores the transformative potential in designing next-generation bimetallic catalysts for clean hydrogen energy.
在铂族金属上,顶位吸附氢和多位吸附氢被认为是酸性析氢反应(HER)的关键中间体,然而桥位氢中间体(H)的作用在实验中一直被忽视。在此,开发了一种具有共晶结构的铂原子链修饰的面心立方钌纳米晶体(Pt-Ru(fcc)),其特征在于H中间体键合在Pt-Ru对偶位点上。电子从对偶位点跃迁至H促进了氢脱附,从而加速了塔菲尔动力学并确保了出色的电催化性能,具有低过电位(10 mA cm时为4.0 mV)和高周转频率(50 mV时为56.4 H s)。值得注意的是,超低负载量为10 μg cm的质子交换膜水电解槽(PEMWE)表现出优异的活性(1.0 A cm时为1.61 V)和低平均降解速率(1000 h内为4.0 μV h),明显优于基准Pt/C。此外,基于PEMWE的80 µm戈尔膜在相同操作条件下,达到1.0和1.5 A cm仅需1.54和1.58 V。这一发现突出了Pt-Ru界面处的H在获得高HER本征活性中的关键作用,并强调了设计用于清洁氢能的下一代双金属催化剂的变革潜力。