Ito Sadayuki, Nakashima Hiroaki, Segi Naoki, Ouchida Jun, Yamauchi Ippei, Hirai Takashi, Oda Masahiro, Mori Kensaku, Yamazaki Masashi, Yoshii Toshitaka, Imagama Shiro
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa Ward, Nagoya 466-8550, Aichi, Japan.
Japanese Multicenter Research Organization for Ossification of the Spinal Ligament, Tokyo 113-8519, Japan.
J Clin Med. 2025 Mar 31;14(7):2389. doi: 10.3390/jcm14072389.
: This study aims to develop and validate a YOLOv3-based deep learning model for detecting ossification of the posterior longitudinal ligament (OPLL) and ossification of the ligamentum flavum (OLF) on lateral thoracic radiographs, improving early diagnosis and screening accessibility. : A retrospective dataset of 356 lateral thoracic radiographs, including 176 with OPLL or OLF and 180 controls, was annotated by spine surgeons. The YOLOv3 model was trained using data augmentation and evaluated via five-fold cross-validation, with accuracy, precision, recall, and F1-score compared to two spine surgeons. : The model achieved 80.6% accuracy, 70.3% precision, 92.6% recall, and 79.9% F1-score, surpassing spine surgeons in accuracy and recall, especially for combined OPLL and OLF cases. Detection accuracy was 81.1% for OPLL, 53.3% for OLF, and 86.3% for combined cases. : The YOLOv3-based model provides high accuracy and robust detection of OPLL and OLF on plain radiographs, offering an efficient and accessible screening tool.
本研究旨在开发并验证一种基于YOLOv3的深度学习模型,用于在胸部侧位X线片上检测后纵韧带骨化(OPLL)和黄韧带骨化(OLF),以提高早期诊断和筛查的可及性。:由脊柱外科医生对一个包含356张胸部侧位X线片的回顾性数据集进行标注,其中包括176例OPLL或OLF病例以及180例对照。使用数据增强技术对YOLOv3模型进行训练,并通过五折交叉验证进行评估,将其准确率、精确率、召回率和F1分数与两位脊柱外科医生的结果进行比较。:该模型的准确率为80.6%,精确率为70.3%,召回率为92.6%,F1分数为79.9%,在准确率和召回率方面超过了脊柱外科医生,尤其是对于OPLL和OLF合并病例。OPLL的检测准确率为81.1%,OLF为53.3%,合并病例为86.3%。:基于YOLOv3的模型在普通X线片上对OPLL和OLF具有较高的准确率和强大的检测能力,提供了一种高效且可及的筛查工具。