Hasani Mahdi, Yuan Weihao, Sevari Sevda, Ferreira Luiza de Almeida Queiroz, Chang Chungyu, Diniz Ivana Márcia Alves, Ton-That Hung, Ansari Sahar, Moshaverinia Alireza
Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States.
Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, United States; Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
Dent Mater. 2025 Jun;41(6):666-678. doi: 10.1016/j.dental.2025.04.003. Epub 2025 Apr 10.
To develop and characterize a novel bioactive polydopamine (PDA)-containing glass-ionomer cement (Dopamer) with enhanced mechanical, antibacterial, and mineralization properties for use as a restorative dental material.
Dopamer was developed by coating fluoroaluminosilicate glass particles with polydopamine (PDA) via dopamine polymerization in alkaline solution. The PDA-coated glass particles were then mixed with a polyacrylic polymer. Mechanical properties were assessed through compressive strength, flexural strength, and Vickers microhardness testing using standardized specimens. Fuji XI and Herculite composite resin were used as the control groups. The adhesion to dentin was evaluated using shear bond strength test. Mineralization potential was investigated using Raman spectroscopy and scanning electron microscopy (SEM) to detect apatite formation on the surface and at the dentin-material interface. Cytocompatibility was evaluated using viability and proliferation assays on human dental pulp stem cells (DPSCs). Antibacterial activity against Streptococcus mutans was examined using both colony-forming unit (CFU) counts and live/dead bacterial staining assays on biofilms formed on the material surfaces. Additionally, odontogenic differentiation was examined using gene expression analysis. An in vivo mice molar pulp capping model was used to assess tertiary dentin formation and inflammatory response after placement of the material. All quantitative data were analyzed using one- or two-way ANOVA followed by Tukey's post hoc test, with significance set at p < 0.05. Kruskal-Wallis Test was utilized to evaluate pulp inflammation scores analysis.
Dopamer exhibited significantly enhanced (p < 0.001) mechanical properties, including improved compressive strength, flexural strength, and microhardness, compared to the conventional glass-ionomer cement (GIC). Shear bond strength to dentin also improved significantly (p < 0.05), demonstrating stronger adhesion. In vitro analyses confirmed in situ mineral formation and dentin mineralization capacity of Dopamer. Raman spectroscopy and SEM-EDS analyses revealed extensive mineral deposition at the interface between Dopamer and dentin, including calcium phosphate-rich layers suggestive of hydroxyapatite formation. Moreover, antibacterial testing demonstrated that Dopamer significantly (p < 0.001) inhibited Streptococcus mutans colonization compared to control (p < 0.001), reducing the risk of recurrent caries. Biocompatibility assays revealed high viability of DPSCs cultured on Dopamer, comparable to or better than the control groups. Dopamer also significantly upregulated odontogenic markers in vitro. In vivo studies showed formation of a continuous layer of tertiary dentin beneath the placed Dopamer, with minimal inflammatory response indicating excellent biocompatibility and regenerative potential.
By combining enhanced mechanical strength, mineralization capacity, and antibacterial properties, Dopamer addresses critical limitations of existing glass-ionomer dental restorative materials, offering a bioactive, durable solution for restorative dentistry. This multifunctional material represents a promising advancement in dental restoration, supporting both clinical performance and long-term oral health.
研发并表征一种新型含生物活性聚多巴胺(PDA)的玻璃离子水门汀(多巴胺水门汀),其具有增强的机械性能、抗菌性能和矿化性能,用作牙科修复材料。
通过在碱性溶液中使多巴胺聚合,将聚多巴胺(PDA)包覆在氟铝硅酸盐玻璃颗粒上,从而制备多巴胺水门汀。然后将包覆有PDA的玻璃颗粒与聚丙烯酸聚合物混合。使用标准化试样,通过抗压强度、抗弯强度和维氏显微硬度测试来评估机械性能。将富士XI玻璃离子水门汀和Herculite复合树脂用作对照组。使用剪切粘结强度测试评估对牙本质的粘结力。使用拉曼光谱和扫描电子显微镜(SEM)研究矿化潜力,以检测材料表面和牙本质 - 材料界面处的磷灰石形成。使用人牙髓干细胞(DPSC)的活力和增殖测定法评估细胞相容性。使用菌落形成单位(CFU)计数和对材料表面形成的生物膜进行活/死细菌染色测定法,检测对变形链球菌的抗菌活性。此外,使用基因表达分析检测牙源性分化。使用体内小鼠磨牙牙髓盖髓模型评估材料放置后第三期牙本质的形成和炎症反应。所有定量数据均使用单因素或双因素方差分析,随后进行Tukey事后检验,显著性设定为p < 0.05。使用Kruskal - Wallis检验评估牙髓炎症评分分析。
与传统玻璃离子水门汀(GIC)相比,多巴胺水门汀的机械性能显著增强(p < 0.001),包括抗压强度、抗弯强度和显微硬度均有所提高。对牙本质的剪切粘结强度也显著提高(p < 0.05),表明粘结力更强。体外分析证实了多巴胺水门汀的原位矿物形成和牙本质矿化能力。拉曼光谱和SEM - EDS分析显示,在多巴胺水门汀与牙本质的界面处有大量矿物沉积,包括富含磷酸钙的层,提示有羟基磷灰石形成。此外,抗菌测试表明,与对照组相比(p < 0.001),多巴胺水门汀显著(p < 0.001)抑制变形链球菌定植,降低了继发龋的风险。生物相容性测定显示,在多巴胺水门汀上培养的DPSC具有高活力,与对照组相当或优于对照组。多巴胺水门汀在体外还显著上调了牙源性标志物。体内研究表明,在放置的多巴胺水门汀下方形成了连续的第三期牙本质层,炎症反应最小,表明具有优异的生物相容性和再生潜力。
通过结合增强的机械强度、矿化能力和抗菌性能,多巴胺水门汀解决了现有玻璃离子牙科修复材料的关键局限性,为修复牙科提供了一种生物活性、耐用的解决方案。这种多功能材料代表了牙科修复领域的一项有前途的进展,对临床性能和长期口腔健康均有支持作用。