Lin Ming-Yu, Lo Yu-Cheng, Hung Jui-Hung
Department of Computer Science, National Yang Ming Chiao Tung University, HsinChu, Taiwan, ROC.
Program in Biomedical Artificial Intelligence, National Tsing Hua University, HsinChu, Taiwan, ROC.
Nat Commun. 2025 Apr 12;16(1):3491. doi: 10.1038/s41467-025-58481-3.
The three-dimensional organization of chromatin is essential for gene regulation and cellular function, with epigenome playing a key role. Hi-C methods have expanded our understanding of chromatin interactions, but their high cost and complexity limit their use. Existing models for predicting chromatin interactions rely on limited ChIP-seq inputs, reducing their accuracy and generalizability. In this work, we present a computational approach, EpiVerse, which leverages imputed epigenetic signals and advanced deep learning techniques. EpiVerse significantly improves the accuracy of cross-cell-type Hi-C prediction, while also enhancing model interpretability by incorporating chromatin state prediction within a multitask learning framework. Moreover, EpiVerse predicts Hi-C contact maps across an array of 39 human tissues, which provides a comprehensive view of the complex relationship between chromatin structure and gene regulation. Furthermore, EpiVerse facilitates unprecedented in silico perturbation experiments at the "epigenome-level" to unveil the chromatin architecture under specific conditions. EpiVerse is available on GitHub: https://github.com/jhhung/EpiVerse .
染色质的三维结构对于基因调控和细胞功能至关重要,表观基因组在其中起着关键作用。Hi-C方法拓展了我们对染色质相互作用的理解,但其高成本和复杂性限制了它们的应用。现有的预测染色质相互作用的模型依赖于有限的ChIP-seq输入,降低了其准确性和通用性。在这项工作中,我们提出了一种计算方法EpiVerse,它利用了估算的表观遗传信号和先进的深度学习技术。EpiVerse显著提高了跨细胞类型Hi-C预测的准确性,同时通过在多任务学习框架中纳入染色质状态预测来增强模型的可解释性。此外,EpiVerse预测了39种人类组织的Hi-C接触图谱,这提供了染色质结构与基因调控之间复杂关系的全面视图。此外,EpiVerse有助于在“表观基因组水平”进行前所未有的计算机模拟扰动实验,以揭示特定条件下的染色质结构。EpiVerse可在GitHub上获取:https://github.com/jhhung/EpiVerse 。