Wang Yagang, Yang Qiulong, Li Jiantao, Wang Kaixuan, Tang Miaotian
School of Computer, Xi'an University of Posts and Telecommunications, Xi'an, 710121, Shaanxi, People's Republic of China.
Department of Orthopedics, The National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
Sci Rep. 2025 Apr 12;15(1):12551. doi: 10.1038/s41598-025-94310-9.
This paper proposes a method for the automatic measurement of proximal femoral morphological parameters based on CT images. First, construct a statistical model of the femur with generalization properties and perform Mask labeling. Second, automatically segment the femur model from CT images to obtain the femur sample to be tested. Then, use the GBCPD point cloud registration algorithm to complete a fast hierarchical registration between the two models, establishing point-to-point correspondences. Based on these correspondences and femoral morphological features, automatically segment the test femur sample into the shaft, neck, and head. Numerical methods are used to determine the femoral shaft axis (using PCA combined with least-squares cylinder fitting), the femoral head center and radius (least-squares sphere fitting), as well as the eccentricity and femur length. We conducted reproducibility tests of this method on 213 femurs and compared the results between automatic segmentation/measurement and manual segmentation/measurement. The Dice similarity coefficients for the femoral head, neck, and shaft reached 0.98, 0.95, and 0.99, respectively. The reproducibility errors of the anatomical standards (angles, dimensions) for automatic measurement were all lower than the errors between manual measurements, indicating that the parameter values obtained by this method exhibit good consistency with the corresponding parameter values manually identified by medical experts in the original CT images. This effectively minimizes subjective influences and can assist orthopedic surgeons in large-scale measurement analysis.
本文提出了一种基于CT图像自动测量股骨近端形态学参数的方法。首先,构建具有泛化特性的股骨统计模型并进行掩膜标注。其次,从CT图像中自动分割出股骨模型以获得待测试的股骨样本。然后,使用GBCPD点云配准算法完成两个模型之间的快速分层配准,建立点对点对应关系。基于这些对应关系和股骨形态特征,将测试股骨样本自动分割为骨干、颈和头。采用数值方法确定股骨干轴线(使用主成分分析结合最小二乘圆柱拟合)、股骨头中心和半径(最小二乘球拟合)以及偏心距和股骨长度。我们对213个股骨进行了该方法的重复性测试,并比较了自动分割/测量与手动分割/测量的结果。股骨头、颈和骨干的Dice相似系数分别达到0.98、0.95和0.99。自动测量的解剖学标准(角度、尺寸)的重复性误差均低于手动测量之间的误差,表明该方法获得的参数值与医学专家在原始CT图像中手动识别的相应参数值具有良好的一致性。这有效地减少了主观影响,并可协助骨科医生进行大规模测量分析。