Shah M Adeel Alam, Lü Shu-Jun, Zhang Jian-Fei, Wang Jia-Wei, Tang Wei, Luo Wen-Chao, Lai Hua-Xun, Yu Sheng-Bo, Sui Hong-Jin
Department of Anatomy, College of Basic Medicine, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, 116044, People's Republic of China.
J Orthop Surg Res. 2025 Apr 12;20(1):370. doi: 10.1186/s13018-025-05773-5.
The trabecular architecture of proximal femur plays a crucial role in hip stability and load distribution and is often ignored in hip fracture fixation due to limited anatomical knowledge. This study analyses trabecular morphology and stress distribution, aiming to provide an anatomical foundation for optimising implant designs.
Twenty-one formalin-fixed human pelvises (twelve male, nine female) were prepared using P45 sectional plastination. They were sliced into 3 mm sections in the coronal, sagittal, and horizontal planes and then photographed. A 3D femur model was created from computed tomographic scans and analysed for finite element analysis (FEA) using Mimics, 3-matics, and Abaqus software to simulate static and dynamic loads, visualising stress paths for compressive and tensile regions and identifying fracture-vulnerable zones.
Two main trabecular systems were identified: the medial and lateral systems. The medial system includes a primary vertical trabecular group extending from the femoral shaft's medial calcar to the head and two primary horizontal groups arching from the lateral shaft, greater trochanter, and femoral neck's anterolateral and posterolateral walls toward the medial side, intersecting with the primary vertical group in the head. Secondary vertical group intersects with secondary horizontal group at the neck-trochanteric junction to form the lateral system. FEA showed peak compressive stress along the vertical groups, calcar, and medial cortex, and tensile stress along the horizontal groups, greater trochanter, and lateral cortex, creating balanced support that stabilises the femoral neck and shaft.
The strength of proximal femur depends on dense cortical bone, calcar femorale, lateral and medial trabecular systems, and greater trochanter. While anterolateral and posterolateral areas of femoral neck and intertrochanteric regions are potential weak zones. Trabecular pattern follows stress paths, optimising load distribution. These insights aid in designing robotic and bionic implants that mimic natural stress patterns, reducing complications.
股骨近端的小梁结构在髋关节稳定性和负荷分布中起着关键作用,但由于解剖学知识有限,在髋部骨折固定中常被忽视。本研究分析小梁形态和应力分布,旨在为优化植入物设计提供解剖学基础。
使用P45切片塑化法制备21个福尔马林固定的人体骨盆(12例男性,9例女性)。将其在冠状面、矢状面和水平面切成3毫米厚的切片,然后拍照。从计算机断层扫描创建三维股骨模型,并使用Mimics、3-matics和Abaqus软件进行有限元分析(FEA),以模拟静态和动态负荷,可视化压缩和拉伸区域的应力路径并识别骨折易患区。
确定了两个主要的小梁系统:内侧和外侧系统。内侧系统包括从股骨干内侧骨嵴延伸至股骨头的一组主要垂直小梁,以及两组从外侧骨干、大转子以及股骨颈前外侧和后外侧壁向内侧呈拱形的主要水平小梁,它们在股骨头处与主要垂直小梁相交。次级垂直小梁组在颈转子交界处与次级水平小梁组相交形成外侧系统。有限元分析显示,垂直小梁组、骨嵴和内侧皮质沿程存在峰值压应力,水平小梁组、大转子和外侧皮质沿程存在拉应力,形成平衡支撑,稳定股骨颈和股骨干。
股骨近端的强度取决于致密的皮质骨、股骨距、外侧和内侧小梁系统以及大转子。而股骨颈的前外侧和后外侧区域以及转子间区域是潜在的薄弱区域。小梁模式遵循应力路径,优化负荷分布。这些见解有助于设计模仿自然应力模式的机器人和仿生植入物,减少并发症。