Shao Donghan, Pei Xinyu, Ma Yuqin, Liu Sainan, Li Wenliang, Li Leijiao, Ma Ping'an
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, P. R. China.
J Mater Chem B. 2025 May 1;13(17):5181-5189. doi: 10.1039/d5tb00338e.
Sonodynamic therapy (SDT) has emerged as an encouraging route in tumor treatment, due to its exceptional tissue penetration depth and favorable safety profile. Nevertheless, the clinical translation of conventional organic sonosensitizers is hindered by intrinsic limitations, including pronounced hydrophobicity, insufficient chemical stability, and low reactive oxygen species (ROS) production. In contrast, hollow covalent organic frameworks (HCOFs) exhibit exceptional cargo-loading capabilities, structural robustness, and biocompatibility, positioning them as ideal nanoplatforms for advanced therapeutic applications. Herein, we engineered a bowl-shaped HCOF architecture designed to amplify ultrasonic cavitation effects. This nanostructure was subsequently functionalized with the sonosensitizer (Hemin) and subjected to strategic metallization metal ion incorporation, culminating in the development of a high-efficiency antitumor nanosystem (FeHHCA). FeHHCA can achieve dual-mode ROS generation, namely, sonodynamic synergistically generating O and being specifically activated by a tumor microenvironment (TME) to generate ˙OH through a Fenton-like reaction, achieving an 78.7% tumor inhibition rate . These findings offer innovative approaches and strategies for the design of hollow COFs and offer great potential for the application of SDT in cancer treatment.
由于其卓越的组织穿透深度和良好的安全性,声动力疗法(SDT)已成为肿瘤治疗中一条令人鼓舞的途径。然而,传统有机声敏剂的临床转化受到内在局限性的阻碍,包括明显的疏水性、化学稳定性不足以及活性氧(ROS)产生量低。相比之下,中空共价有机框架(HCOFs)具有出色的载药能力、结构稳健性和生物相容性,使其成为先进治疗应用的理想纳米平台。在此,我们设计了一种碗状HCOF结构,旨在增强超声空化效应。随后,这种纳米结构用声敏剂(血红素)进行功能化,并进行了策略性金属化(金属离子掺入),最终开发出一种高效抗肿瘤纳米系统(FeHHCA)。FeHHCA可以实现双模式ROS生成,即声动力协同产生O,并被肿瘤微环境(TME)特异性激活,通过类芬顿反应产生˙OH,实现78.7%的肿瘤抑制率。这些发现为中空COF的设计提供了创新方法和策略,并为SDT在癌症治疗中的应用提供了巨大潜力。