Zhang Peipei, Gao Yang, Li Shaohai, Zhao Shaoliang, Wang Hai, Yu Pengcheng, Gao Guanghui, Wang Yuanrui
Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, No. 2055, Yan'an Street, Changchun 130012, P. R. China.
ACS Appl Mater Interfaces. 2025 Apr 23;17(16):24412-24420. doi: 10.1021/acsami.5c00154. Epub 2025 Apr 14.
Medical catheters require lubrication and antimicrobial properties to reduce complications, such as tissue trauma and bacterial infections. Coating hydrogel on the catheter surface is a promising strategy; however, it usually faces the challenge of weak interfacial adhesion, thus leading to coating delamination or fracture and failure. Here, a waterborne polyurethane (WPU)-triggered surface bonding strategy was presented to construct hydrogel coatings, which involved two key steps: (i) coating a sticky WPU layer on the catheter surface and (ii) dip-coating the WPU-coated catheter with a monomer solution consisting of quaternary ammonium chitosan (QCS), sulfobetaine methacrylate (SBMA), -vinylpyrrolidone (NVP), and zinc sulfate heptahydrate (ZnSO·7HO) for growing the hydrogel layer by ultraviolet initiation. The hydrogel coating demonstrated tough adhesion performance to the catheter, and the interfacial bonding strength achieved 536 N/m. Meanwhile, the hydrogel coating had a variable thickness adjusted by QCS and possessed excellent hydrophilicity (WCA = 24.6°) and low surface friction properties (COF = 0.0357) based on the formation of the hydration layer. Furthermore, the introduction of ZnSO·7HO endowed the hydrogel coating with prominent antimicrobial properties against (Gram-negative bacteria) and (Gram-positive bacteria). This approach paves an avenue for fabricating hydrogel coatings with strong interface stability, controllable thickness, lubrication, and antibacterial properties.
医用导管需要具备润滑和抗菌性能以减少并发症,如组织损伤和细菌感染。在导管表面涂覆水凝胶是一种很有前景的策略;然而,它通常面临界面附着力弱的挑战,从而导致涂层分层、破裂和失效。在此,提出了一种水性聚氨酯(WPU)引发的表面键合策略来构建水凝胶涂层,该策略涉及两个关键步骤:(i)在导管表面涂覆一层粘性WPU层;(ii)用由季铵壳聚糖(QCS)、甲基丙烯酰基磺酸甜菜碱(SBMA)、N-乙烯基吡咯烷酮(NVP)和七水硫酸锌(ZnSO₄·7H₂O)组成的单体溶液对涂有WPU的导管进行浸涂,通过紫外线引发来生长水凝胶层。该水凝胶涂层对导管表现出很强的粘附性能,界面结合强度达到536 N/m。同时,水凝胶涂层的厚度可通过QCS进行调节,并且基于水化层的形成具有优异的亲水性(水接触角WCA = 24.6°)和低表面摩擦性能(摩擦系数COF = 0.0357)。此外,ZnSO₄·7H₂O的引入赋予了水凝胶涂层对大肠杆菌(革兰氏阴性菌)和金黄色葡萄球菌(革兰氏阳性菌)显著的抗菌性能。这种方法为制备具有强界面稳定性、可控厚度、润滑性和抗菌性能的水凝胶涂层开辟了一条途径。