Tyagi Ashima, Singh Vibhav Prakash, Gore Manoj Madhava
Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004 India.
Health Inf Sci Syst. 2025 Apr 12;13(1):32. doi: 10.1007/s13755-025-00345-7. eCollection 2025 Dec.
Schizophrenia is a neuropsychiatric disorder that hampers brain functions and causes hallucinations, delusions, and bizarre behavior. The stigmatization associated with this disabling disorder drives the need to build diagnostic models with impeccable performances. Neuroimaging modality such as structural MRI is coupled with machine learning techniques to perform schizophrenia diagnosis with increased reliability. We investigate the structural aberrations present in the structural MR images using machine learning techniques. In this study, we propose a new hybrid approach using spatial and frequency domain-based features for the early automated detection of schizophrenia using machine learning techniques. The spatial or texture features are extracted using the local binary pattern method, and frequency-based features, including magnitude and phase, are extracted using the fast fourier transform feature extraction technique. Hybrid features, combining spatial and frequency-based features, are utilized for schizophrenia classification using support vector machine, random forest, and k-nearest neighbor with stratified 10-fold cross-validation. The support vector machine and random forest classifiers achieve encouraging detection performances on the hybrid feature set, with 86.5% and 85.1% accuracy, respectively. Among the three classifiers, k-nearest neighbor shows outstanding detection performance with an accuracy of 98.1%. The precision and recall achieved by the k-nearest neighbor classifier are 98.1% and 98.0% respectively, reflecting accurate detection of schizophrenia by the proposed model.
精神分裂症是一种神经精神障碍,会妨碍大脑功能并导致幻觉、妄想和怪异行为。与这种致残性疾病相关的污名化促使人们需要构建具有完美性能的诊断模型。诸如结构磁共振成像(MRI)之类的神经成像模态与机器学习技术相结合,以提高精神分裂症诊断的可靠性。我们使用机器学习技术研究结构磁共振图像中存在的结构畸变。在本研究中,我们提出了一种新的混合方法,该方法使用基于空间和频域的特征,通过机器学习技术对精神分裂症进行早期自动检测。使用局部二值模式方法提取空间或纹理特征,并使用快速傅里叶变换特征提取技术提取基于频率的特征,包括幅度和相位。结合基于空间和频率的特征的混合特征用于使用支持向量机、随机森林和k近邻进行精神分裂症分类,并采用分层10折交叉验证。支持向量机和随机森林分类器在混合特征集上取得了令人鼓舞的检测性能,准确率分别为86.5%和85.1%。在这三个分类器中,k近邻表现出出色的检测性能,准确率为98.1%。k近邻分类器实现的精确率和召回率分别为98.1%和98.0%,反映了所提出模型对精神分裂症的准确检测。