Suppr超能文献

基于 MFC 系数选择统计矩和集成学习的脑电信号精神分裂症检测

Detection of Schizophrenia from EEG Signals using Selected Statistical Moments of MFC Coefficients and Ensemble Learning.

机构信息

Department of Computer Science and Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.

出版信息

Neuroinformatics. 2024 Oct;22(4):499-520. doi: 10.1007/s12021-024-09684-4. Epub 2024 Sep 19.

Abstract

Schizophrenia is a mental disorder characterized by neurophysiological dysfunctions that result in disturbances in thinking, perception, and behavior. Early identification of schizophrenia can help prevent potential complications and facilitate effective treatment and management of the condition. This paper proposes a computer aided diagnosis system for the early detection of schizophrenia using 19-channel Electroencephalography (EEG) signals from 28 subjects, leveraging statistical moments of Mel-frequency Cepstral Coefficients (MFCC) and ensemble learning. Initially, the EEG signals are passed through a high-pass filter to mitigate noise and remove extraneous data. The feature extraction technique is then employed to extract MFC coefficients from the filtered EEG signals. The dimensionality of these coefficients is reduced by computing their statistical moments, which include the mean, standard deviation, skewness, kurtosis, and energy. Subsequently, the Support Vector Machine based Recursive Feature Elimination (SVM-RFE) is applied to identify pertinent features from the statistical moments of the MFC coefficients. These SVM-RFE-based selected features serve as input for three base classifiers: Support Vector Machine, k-Nearest Neighbors, and Logistic Regression. Additionally, an ensemble learning approach, which combines the predictions of the three classifiers through majority voting, is introduced to enhance schizophrenia detection performance and generalize the results of the proposed approach. The study's findings demonstrate that the ensemble model, combined with SVM-RFE-based selected statistical moments of MFCC, achieves encouraging detection performance, highlighting the potential of machine learning techniques in advancing the diagnostic process of schizophrenia.

摘要

精神分裂症是一种精神障碍,其特征为神经生理功能障碍,导致思维、感知和行为紊乱。早期识别精神分裂症有助于预防潜在的并发症,并促进对该病症的有效治疗和管理。本文提出了一种基于 19 通道脑电图(EEG)信号的计算机辅助诊断系统,用于早期检测精神分裂症,该系统使用了来自 28 个对象的统计矩和集合学习。首先,EEG 信号通过高通滤波器过滤,以减轻噪声并去除无关数据。然后采用特征提取技术从滤波后的 EEG 信号中提取 MFCC 系数。通过计算这些系数的统计矩,包括均值、标准差、偏度、峰度和能量,来降低这些系数的维数。随后,基于支持向量机的递归特征消除(SVM-RFE)用于从 MFCC 系数的统计矩中识别相关特征。这些基于 SVM-RFE 的选择特征作为三个基本分类器(支持向量机、k-最近邻和逻辑回归)的输入。此外,还引入了一种集合学习方法,通过多数投票结合三个分类器的预测,以提高精神分裂症检测性能并推广所提出方法的结果。研究结果表明,结合 SVM-RFE 选择的 MFCC 统计矩的集成模型实现了令人鼓舞的检测性能,突显了机器学习技术在推进精神分裂症诊断过程中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验