Suppr超能文献

使用机器学习算法早期检测儿童和青少年的强迫症、分离焦虑症和注意力缺陷多动障碍。

Early detection of paediatric and adolescent obsessive-compulsive, separation anxiety and attention deficit hyperactivity disorder using machine learning algorithms.

作者信息

Haque Umme Marzia, Kabir Enamul, Khanam Rasheda

机构信息

School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia.

School of Business, University of Southern Queensland, Toowoomba, Australia.

出版信息

Health Inf Sci Syst. 2023 Jul 22;11(1):31. doi: 10.1007/s13755-023-00232-z. eCollection 2023 Dec.

Abstract

PURPOSE

Mental health issues of young minds are at the threshold of all development and possibilities. Obsessive-compulsive disorder (OCD), separation anxiety disorder (SAD), and attention deficit hyperactivity disorder (ADHD) are three of the most common mental illness affecting children and adolescents. Several studies have been conducted on approaches for recognising OCD, SAD and ADHD, but their accuracy is inadequate due to limited features and participants. Therefore, the purpose of this study is to investigate the approach using machine learning (ML) algorithms with 1474 features from Australia's nationally representative mental health survey of children and adolescents.

METHODS

Based on the internal cross-validation (CV) score of the Tree-based Pipeline Optimization Tool (TPOTClassifier), the dataset has been examined using three of the most optimal algorithms, including Random Forest (RF), Decision Tree (DT), and Gaussian Naïve Bayes (GaussianNB).

RESULTS

GaussianNB performs well in classifying OCD with 91% accuracy, 76% precision, and 96% specificity as well as in detecting SAD with 79% accuracy, 62% precision, 91% specificity. RF outperformed all other methods in identifying ADHD with 91% accuracy, 94% precision, and 99% specificity.

CONCLUSION

Using Streamlit and Python a web application was developed based on the findings of the analysis. The application will assist parents/guardians and school officials in detecting mental illnesses early in their children and adolescents using signs and symptoms to start the treatment at the earliest convenience.

摘要

目的

青少年的心理健康问题处于所有发展和可能性的开端。强迫症(OCD)、分离焦虑症(SAD)和注意力缺陷多动障碍(ADHD)是影响儿童和青少年的三种最常见的精神疾病。已经针对识别强迫症、分离焦虑症和注意力缺陷多动障碍的方法进行了多项研究,但由于特征和参与者有限,其准确性不足。因此,本研究的目的是使用机器学习(ML)算法,基于澳大利亚具有全国代表性的儿童和青少年心理健康调查中的1474个特征来研究该方法。

方法

基于基于树的管道优化工具(TPOTClassifier)的内部交叉验证(CV)分数,使用三种最优算法对数据集进行了检验,这三种算法包括随机森林(RF)、决策树(DT)和高斯朴素贝叶斯(GaussianNB)。

结果

高斯朴素贝叶斯在对强迫症进行分类时表现良好,准确率为91%,精确率为76%,特异性为96%;在检测分离焦虑症时,准确率为79%,精确率为62%,特异性为91%。随机森林在识别注意力缺陷多动障碍方面优于所有其他方法,准确率为91%,精确率为94%,特异性为99%。

结论

基于分析结果,使用Streamlit和Python开发了一个网络应用程序。该应用程序将帮助家长/监护人以及学校官员利用症状和体征尽早发现儿童和青少年的精神疾病,以便尽早开始治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e8c/10363094/8c350acab306/13755_2023_232_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验