Suppr超能文献

基于改进的YOLOv8n增强多级茶叶识别

Enhancing multilevel tea leaf recognition based on improved YOLOv8n.

作者信息

Tang Xinchen, Tang Li, Li Junmin, Guo Xiaofei

机构信息

School of Mechanical Engineering, Xihua University, Chengdu, China.

School of Automobile and Transportation, Xihua University, Chengdu, China.

出版信息

Front Plant Sci. 2025 Mar 28;16:1540670. doi: 10.3389/fpls.2025.1540670. eCollection 2025.

Abstract

In the tea industry, automated tea picking plays a vital role in improving efficiency and ensuring quality. Tea leaf recognition significantly impacts the precision and success of automated operations. In recent years, deep learning has achieved notable advancements in tea detection, yet research on multilevel composite features remains insufficient. To meet the diverse demands of automated tea picking, this study aims to enhance the recognition of different tea leaf categories. A novel method for generating overlapping-labeled tea category datasets is proposed. Additionally, the Tea-You Only Look Once v8n (T-YOLOv8n) model is introduced for multilevel composite tea leaf detection. By incorporating the Convolutional Block Attention Module (CBAM) and the Bidirectional Feature Pyramid Network (BiFPN) for multi-scale feature fusion, the improved T-YOLOv8n model demonstrates superior performance in detecting small and overlapping targets. Moreover, integrating the CIOU and Focal Loss functions further optimizes the accuracy and stability of bounding box predictions. Experimental results highlight that the proposed T-YOLOv8n surpasses YOLOv8, YOLOv5, and YOLOv9 in mAP50, achieving a notable precision increase from 70.5% to 74.4% and recall from 73.3% to 75.4%. Additionally, computational costs are reduced by up to 19.3%, confirming its robustness and suitability for complex tea garden environment. The proposed model demonstrates improved detection accuracy while maintaining computationally efficient operations, facilitating practical deployment in resource-constrained edge computing environments. By integrating advanced feature fusion and data augmentation techniques, the model demonstrates enhanced adaptability to diverse lighting conditions and background variations, improving its robustness in practical scenarios. Moreover, this study contributes to the development of smart agricultural technologies, including intelligent tea leaf classification, automated picking, and real-time tea garden monitoring, providing new opportunities to enhance the efficiency and sustainability of tea production.

摘要

在茶叶产业中,自动化采茶对于提高效率和保证质量起着至关重要的作用。茶叶识别对自动化操作的精度和成功率有重大影响。近年来,深度学习在茶叶检测方面取得了显著进展,但对多级复合特征的研究仍显不足。为满足自动化采茶的多样化需求,本研究旨在提高对不同茶叶类别识别的能力。提出了一种生成重叠标注茶叶类别数据集的新方法。此外,引入了茶叶-你只看一次v8n(T-YOLOv8n)模型用于多级复合茶叶检测。通过整合卷积块注意力模块(CBAM)和双向特征金字塔网络(BiFPN)进行多尺度特征融合,改进后的T-YOLOv8n模型在检测小目标和重叠目标方面表现出卓越性能。此外,整合CIOU和焦点损失函数进一步优化了边界框预测的准确性和稳定性。实验结果表明,所提出的T-YOLOv8n在mAP50方面超越了YOLOv8、YOLOv5和YOLOv9,精度从70.5%显著提高到74.4%,召回率从73.3%提高到75.4%。此外,计算成本降低了高达19.3%,证实了其在复杂茶园环境中的鲁棒性和适用性。所提出的模型在保持计算高效操作的同时提高了检测精度,便于在资源受限的边缘计算环境中进行实际部署。通过整合先进的特征融合和数据增强技术,该模型对不同光照条件和背景变化表现出更强的适应性,提高了其在实际场景中的鲁棒性。此外,本研究为智能农业技术的发展做出了贡献,包括智能茶叶分类、自动化采摘和实时茶园监测,为提高茶叶生产的效率和可持续性提供了新机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ec/11985816/ba2f1fd7a269/fpls-16-1540670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验