CNR-IEIIT, 10129 Turin, Italy.
Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Turin, Italy.
Sensors (Basel). 2023 Mar 16;23(6):3195. doi: 10.3390/s23063195.
The explosion of artificial intelligence methods has paved the way for more sophisticated smart mobility solutions. In this work, we present a multi-camera video content analysis (VCA) system that exploits a single-shot multibox detector (SSD) network to detect vehicles, riders, and pedestrians and triggers alerts to drivers of public transportation vehicles approaching the surveilled area. The evaluation of the VCA system will address both detection and alert generation performance by combining visual and quantitative approaches. Starting from a SSD model trained for a single camera, we added a second one, under a different field of view (FOV) to improve the accuracy and reliability of the system. Due to real-time constraints, the complexity of the VCA system must be limited, thus calling for a simple multi-view fusion method. According to the experimental test-bed, the use of two cameras achieves a better balance between precision (68%) and recall (84%) with respect to the use of a single camera (i.e., 62% precision and 86% recall). In addition, a system evaluation in temporal terms is provided, showing that missed alerts (false negatives) and wrong alerts (false positives) are typically transitory events. Therefore, adding spatial and temporal redundancy increases the overall reliability of the VCA system.
人工智能方法的爆炸式发展为更复杂的智能移动性解决方案铺平了道路。在这项工作中,我们提出了一个多摄像机视频内容分析(VCA)系统,该系统利用单次多盒探测器(SSD)网络来检测车辆、骑手和行人,并向接近监控区域的公共交通工具驾驶员发出警报。VCA 系统的评估将通过结合视觉和定量方法来解决检测和警报生成性能。从为单个摄像机训练的 SSD 模型开始,我们添加了第二个模型,具有不同的视场(FOV),以提高系统的准确性和可靠性。由于实时限制,VCA 系统的复杂性必须受到限制,因此需要一种简单的多视图融合方法。根据实验测试平台,与使用单个摄像机相比,使用两个摄像机可以在精度(68%)和召回率(84%)之间取得更好的平衡(即,精度为 62%,召回率为 86%)。此外,还提供了时间方面的系统评估,表明错过的警报(漏报)和错误的警报(误报)通常是短暂事件。因此,增加空间和时间冗余度可以提高 VCA 系统的整体可靠性。