文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

腺性膀胱炎复发的个性化预测:来自SHAP和机器学习模型的见解

Personalized prediction for recurrence of cystitis glandularis: insights from SHAP and machine learning models.

作者信息

Yuan Yuyang, Zheng Fuchun, Yao Jiming, Zhou Kun, Yang Jiaqing, Liu Xiaoqiang, Wan Hao, Chen Luyao, Hu Jieping, Zhou Lizhi, Fu Bin

机构信息

Department of Urology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

Jiangxi Institute of Urology, Nanchang, China.

出版信息

Transl Androl Urol. 2025 Mar 30;14(3):808-819. doi: 10.21037/tau-2024-665. Epub 2025 Mar 26.


DOI:10.21037/tau-2024-665
PMID:40226087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11986474/
Abstract

BACKGROUND: Cystitis glandularis (CG) is a rare urological condition characterized by glandular metaplasia of the bladder mucosa. Recurrence following transurethral resection (TUR) is a significant clinical challenge. Traditional predictive models often fail to capture the complexity of the data, resulting in insufficient accuracy. In contrast, machine learning (ML) has demonstrated substantial potential in medical prediction by identifying and analyzing complex patterns that are undetectable by conventional methods. This study aims to develop and evaluate an interpretable ML model to predict recurrence after TUR for CG, thereby improving clinical decision-making and patient outcomes. METHODS: We analyzed predictors of recurrence using the least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression. We developed and tested seven ML-based models: Cox proportional hazards model (CoxPH), LASSO regression, decision tree (rpart), random survival forest (RSF), gradient boosting machine (GBM), support vector machine (SVM), and extreme gradient boosting (XGBoost). Participants were diagnosed with CG by pathology following TUR and treated from 2012 to 2018. Model discrimination was assessed using the receiver operating characteristic (ROC) curve and area under the ROC curve (AUC), while model preference was evaluated through the Brier score (BS). Decision curve analysis (DCA) was used for model comparison. The SHapley Additive exPlanations (SHAP) method was employed for interpretation, providing insights into recurrence prediction and prevention strategies. Finally, user-friendly platform was developed, allowing users to predict CG recurrence by entering feature values into designated text boxes on the webpage. RESULTS: The RSF model demonstrated the best performance in predicting recurrence, as indicated by superior ROC, DCA, and BS metrics. In SHAP, postoperative regular instillation (PRI) contributed the most to model construction. CONCLUSIONS: The RSF model effectively predicts CG recurrence, offering a framework for individualized treatment strategies. PRI was identified as the most significant risk factor influencing recurrence.

摘要

背景:腺性膀胱炎(CG)是一种罕见的泌尿系统疾病,其特征为膀胱黏膜的腺性化生。经尿道切除术(TUR)后复发是一项重大的临床挑战。传统的预测模型往往无法捕捉数据的复杂性,导致准确性不足。相比之下,机器学习(ML)通过识别和分析传统方法无法检测到的复杂模式,在医学预测中显示出巨大潜力。本研究旨在开发和评估一种可解释的ML模型,以预测CG患者TUR后的复发情况,从而改善临床决策和患者预后。 方法:我们使用最小绝对收缩和选择算子(LASSO)和多变量逻辑回归分析复发的预测因素。我们开发并测试了七种基于ML的模型:Cox比例风险模型(CoxPH)、LASSO回归、决策树(rpart)、随机生存森林(RSF)、梯度提升机(GBM)、支持向量机(SVM)和极端梯度提升(XGBoost)。参与者在2012年至2018年期间接受TUR后经病理诊断为CG并接受治疗。使用受试者工作特征(ROC)曲线和ROC曲线下面积(AUC)评估模型的辨别力,同时通过Brier评分(BS)评估模型偏好。决策曲线分析(DCA)用于模型比较。采用SHapley加性解释(SHAP)方法进行解释,以深入了解复发预测和预防策略。最后,开发了用户友好的平台,允许用户通过在网页上指定的文本框中输入特征值来预测CG复发。 结果:RSF模型在预测复发方面表现最佳,其ROC、DCA和BS指标均更优。在SHAP分析中,术后定期灌注(PRI)对模型构建的贡献最大。 结论:RSF模型可有效预测CG复发,为个体化治疗策略提供了框架。PRI被确定为影响复发的最显著危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/484cd379c7b8/tau-14-03-808-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/63f6077dfaba/tau-14-03-808-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/dd2924a0d2bb/tau-14-03-808-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/d28b82ddf3b1/tau-14-03-808-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/484cd379c7b8/tau-14-03-808-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/63f6077dfaba/tau-14-03-808-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/dd2924a0d2bb/tau-14-03-808-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/d28b82ddf3b1/tau-14-03-808-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/887d/11986474/484cd379c7b8/tau-14-03-808-f4.jpg

相似文献

[1]
Personalized prediction for recurrence of cystitis glandularis: insights from SHAP and machine learning models.

Transl Androl Urol. 2025-3-30

[2]
Construction of a random survival forest model based on a machine learning algorithm to predict early recurrence after hepatectomy for adult hepatocellular carcinoma.

BMC Cancer. 2024-12-25

[3]
Constructing a predictive model for early-onset sepsis in neonatal intensive care unit newborns based on SHapley Additive exPlanations explainable machine learning.

Transl Pediatr. 2024-11-30

[4]
Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma.

Front Oncol. 2023-3-15

[5]
Prediction of STAS in lung adenocarcinoma with nodules ≤ 2 cm using machine learning: a multicenter retrospective study.

BMC Cancer. 2025-3-7

[6]
Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer.

Front Oncol. 2024-2-6

[7]
Machine learning-based prediction model for patients with recurrent Staphylococcus aureus bacteremia.

BMC Med Inform Decis Mak. 2025-2-24

[8]
Predicting the risk of heart failure after acute myocardial infarction using an interpretable machine learning model.

Front Cardiovasc Med. 2025-1-24

[9]
Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery.

Aging Clin Exp Res. 2023-11

[10]
Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation.

Front Neurol. 2023-8-8

本文引用的文献

[1]
Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions.

Ren Fail. 2025-12

[2]
Anti-cystitis glandularis action exerted by glycyrrhetinic acid: bioinformatics analysis and molecular validation.

Mol Divers. 2025-1-28

[3]
Harnessing Machine Learning and Nomogram Models to Aid in Predicting Progression-Free Survival for Gastric Cancer Patients Post-Gastrectomy with Deficient Mismatch Repair(dMMR).

BMC Cancer. 2025-1-24

[4]
Pelvic lipomatosis-a rare diagnosis and a challenging management: a case report and literature review.

J Surg Case Rep. 2024-12-15

[5]
Development and external validation of a nomogram to predict the prognosis of patients with metastatic prostate cancer who underwent radiotherapy.

Gland Surg. 2024-11-30

[6]
Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers.

Ultrasound Med Biol. 2025-3

[7]
Cystitis glandularis: MR imaging characteristics in 27 patients.

Jpn J Radiol. 2025-3

[8]
Development and validation of an early diagnosis model for bone metastasis in non-small cell lung cancer based on serological characteristics of the bone metastasis mechanism.

EClinicalMedicine. 2024-4-26

[9]
Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy.

Urolithiasis. 2024-4-13

[10]
OralExplorer: a web server for exploring the mechanisms of oral inflammatory diseases.

J Transl Med. 2024-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索