Yang Yang, Liu Xu, He Daoping, Jin Fangming
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
China-UK Low-Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Nanomicro Lett. 2025 Apr 14;17(1):216. doi: 10.1007/s40820-025-01711-6.
The combination of solar energy and natural hydrothermal systems will innovate the chemistry of CO hydrogenation; however, the approach remains challenging due to the lack of robust and cost-effective catalytic system. Here, Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermal CO methanation. Nanosheets of honeycomb ZnO were grown in situ on the Co surface, resulting in a new motif (Co@ZnO catalyst) that inhibits Co deactivation through ZnO-assisted CoO reduction. The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion of CO-CH. In situ hydrothermal infrared spectroscopy confirmed the formation of formic acid as an intermediate, thereby avoiding CO formation and unwanted side reaction pathways. This study presents a straightforward one-step process for both highly efficient CO conversion and catalyst synthesis, paving the way for solar-driven CO methanation.
太阳能与天然热液系统的结合将革新一氧化碳加氢的化学过程;然而,由于缺乏强大且经济高效的催化系统,该方法仍具有挑战性。在此,选择可通过太阳能诱导方法回收利用的锌作为还原剂,钴作为催化剂,以实现强大的热液一氧化碳甲烷化。蜂窝状氧化锌纳米片在钴表面原位生长,形成了一种新结构(钴@氧化锌催化剂),通过氧化锌辅助的氧化钴还原抑制钴失活。稳定的钴以及钴与氧化锌之间的相互作用协同作用,实现了一氧化碳到甲烷的完全转化。原位热液红外光谱证实了甲酸作为中间体的形成,从而避免了一氧化碳的形成和不必要的副反应途径。本研究提出了一种用于高效一氧化碳转化和催化剂合成的直接一步法,为太阳能驱动的一氧化碳甲烷化铺平了道路。