Zhang Gaobo, Ren Xuan, Zhou Boqian, Gu Wenting, Li Yifang, Sun Yun-Lu, Ta Dean, Liu Xin
Department of Biomedical Engineering, Fudan University.
Academy for Engineering and Technology, Fudan University.
J Vis Exp. 2025 Mar 28(217). doi: 10.3791/67813.
The cerebral microvasculature forms a complex network of vessels essential for maintaining brain function. Diseases such as stroke, Alzheimer's disease, gliomas, and vascular dementia can profoundly disrupt the microvascular system. Unfortunately, current medical imaging modalities offer only indirect observations at this scale. Inspired by optical microscopy, ultrasound localization microscopy (ULM) overcomes the classical trade-off between penetration depth and spatial resolution. By localizing and tracking individual injected microbubbles (MBs) with sub-wavelength precision, vascular and velocity maps can be generated at the micrometer scale. Here, we present a robust protocol for super-resolution imaging of the brain microvasculature in vivo in rats using a commercial ultrasound platform. This method achieves 12.5 µm spatial resolution, reconstructing the microvascular architecture and providing detailed information on blood flow direction and velocity, greatly enhancing our understanding of cerebral microcirculation. The protocol can be extended to rat disease models, offering a powerful tool for the early diagnosis and treatment of neurovascular diseases.
脑微血管系统形成了一个对维持脑功能至关重要的复杂血管网络。中风、阿尔茨海默病、神经胶质瘤和血管性痴呆等疾病会严重破坏微血管系统。不幸的是,目前的医学成像方式在这个尺度上仅能提供间接观察。受光学显微镜的启发,超声定位显微镜(ULM)克服了穿透深度和空间分辨率之间的经典权衡。通过以亚波长精度定位和跟踪单个注射的微泡(MBs),可以在微米尺度上生成血管和速度图。在这里,我们展示了一种使用商用超声平台在大鼠体内对脑微血管进行超分辨率成像的稳健方案。该方法实现了12.5 µm的空间分辨率,重建了微血管结构,并提供了关于血流方向和速度的详细信息,极大地增强了我们对脑微循环的理解。该方案可扩展到大鼠疾病模型,为神经血管疾病的早期诊断和治疗提供了一个强大的工具。