Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai 201907, China.
Ultrasonics. 2024 Sep;143:107410. doi: 10.1016/j.ultras.2024.107410. Epub 2024 Jul 26.
Ultrasound Localization Microscopy (ULM) surpasses the constraints imposed by acoustic diffraction, achieving sub-wavelength resolution visualization of microvasculature through the precise localization of minute microbubbles (MBs). Nonetheless, the analysis of densely populated regions with overlapping MB point spread responses introduces significant localization errors, limiting the use of technique to low-concentration conditions. This raises a trade-off issue between localization efficiency and MB density. In this work, we present a new deep learning framework that combines Transformer and U-Net architectures, termed ULM-TransUNet. As a non-linear model, it is able to learn the complex data patterns of overlapping MBs in dense conditions for accurate localization. To evaluate the performance of ULM-TransUNet, a series of numerical simulations and in vivo experiments are carried out. Numerical simulation results indicate that ULM-TransUNet achieves high-quality ULM imaging, with improvements of 21.93 % in detection rate, 17.36 % in detection precision, and 20.53 % in detection sensitivity, compared to previous state-of-the-art deep learning (DL) method (e.g., ULM-UNet). For the in vivo experiments, ULM-TransUNet achieves the highest spatial resolution (9.4 μm) and rapid inference speed (26.04 ms/frame). Furthermore, it consistently detects more small vessels and resolves closely spaced vessels more effectively. The outcomes of this work imply that ULM-TransUNet can potentially enhance the microvascular imaging performance on high-density MB conditions.
超声局域显微镜 (ULM) 克服了声衍射的限制,通过对微小气泡 (MB) 的精确定位,实现了亚波长分辨率的微血管可视化。然而,在密集区域中分析具有重叠 MB 点扩展响应的区域会引入显著的定位误差,限制了该技术在低浓度条件下的使用。这就产生了定位效率和 MB 密度之间的权衡问题。在这项工作中,我们提出了一种新的深度学习框架,结合了 Transformer 和 U-Net 架构,称为 ULM-TransUNet。作为一种非线性模型,它能够学习密集条件下重叠 MB 的复杂数据模式,以实现准确的定位。为了评估 ULM-TransUNet 的性能,我们进行了一系列数值模拟和体内实验。数值模拟结果表明,与之前的最先进的深度学习 (DL) 方法(例如 ULM-UNet)相比,ULM-TransUNet 实现了高质量的 ULM 成像,检测率提高了 21.93%,检测精度提高了 17.36%,检测灵敏度提高了 20.53%。对于体内实验,ULM-TransUNet 实现了最高的空间分辨率 (9.4 μm) 和快速推断速度 (26.04 ms/帧)。此外,它还能更有效地检测到更多的小血管,并更有效地分辨出紧密间隔的血管。这项工作的结果表明,ULM-TransUNet 有可能增强高密度 MB 条件下的微血管成像性能。