Suppr超能文献

评估神经辐射场在无创容积评估中的有效性。

Evaluating the Effectiveness of Neural Radiance Field for Noninvasive Volumetric Assessment.

作者信息

Nakaso Soma, Ueda Hyakuzoh, Ono Shimpei, Ogawa Rei

机构信息

From the Department of Plastic and Aesthetic Surgery, Shonan Kamakura General Hospital, Kamakura, Kanagawa, Japan.

Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan.

出版信息

Plast Reconstr Surg Glob Open. 2025 Apr 14;13(4):e6708. doi: 10.1097/GOX.0000000000006708. eCollection 2025 Apr.

Abstract

Assessing swelling is crucial for the surgical treatment of lower limb lymphedema and is often conducted using 2-dimensional (2D) imaging, which is available in most outpatient settings. Advanced methods, such as taping and computed tomography (CT), are limited by time and equipment constraints. The neural radiance field (NeRF) uses deep learning to reconstruct 3-dimensional (3D) scenes from 2D images, overcoming the challenges, particularly reflections and refractions, associated with photogrammetry. This study aimed to evaluate the effectiveness of Luma 3D, an iPhone application that utilizes NeRF, for volumetric assessment in an outpatient setting. An 88-year-old woman with chronic lymphedema was evaluated over a period of 12 months using NeRF-based 3D modeling. She presented with walking difficulty, owing to congestive dermatitis and persistent exudate, and was treated nonsurgically using topical applications and compression therapy. Initial CT scans showed a bilateral volume of 19,500 mL from the knee to the foot, whereas 3D measurements indicated a total volume of 20,100 mL. After 12 months of treatment, a CT scan showed a volume of 19,900 mL, whereas the 3D application measured a volume of 20,300 mL, demonstrating the capability of NeRF in volume change assessment, which could not be achieved by 2D assessments. Therefore, NeRF offers a promising solution for the 3D assessment of lymphedema in outpatient settings, providing accurate and noninvasive volumetric measurements. This approach addresses the limitations of traditional imaging methods and has potential applications in the fields of medical equipment and telemedicine.

摘要

评估肿胀情况对于下肢淋巴水肿的外科治疗至关重要,通常使用二维(2D)成像进行评估,大多数门诊环境都可进行这种检查。诸如卷尺测量和计算机断层扫描(CT)等先进方法受到时间和设备限制。神经辐射场(NeRF)利用深度学习从二维图像重建三维(3D)场景,克服了与摄影测量相关的挑战,特别是反射和折射问题。本研究旨在评估一款利用NeRF技术的iPhone应用程序Luma 3D在门诊环境中进行容积评估的有效性。一名患有慢性淋巴水肿的88岁女性在12个月的时间里接受了基于NeRF的三维建模评估。她因充血性皮炎和持续渗出液而行走困难,接受了非手术治疗,采用局部用药和压迫疗法。最初的CT扫描显示从膝盖到足部的双侧容积为19500毫升,而三维测量显示总体积为20100毫升。经过12个月的治疗后,CT扫描显示容积为19900毫升,而三维应用程序测量的容积为20300毫升,这表明NeRF在容积变化评估方面的能力,这是二维评估无法实现的。因此,NeRF为门诊环境中淋巴水肿的三维评估提供了一种有前景的解决方案,可提供准确且无创的容积测量。这种方法解决了传统成像方法的局限性,在医疗设备和远程医疗领域具有潜在应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e4/11995981/399eb6182b57/gox-13-e6708-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验