School of Computing, Gachon University, Seongnam 13120, Republic of Korea.
Sensors (Basel). 2024 Sep 12;24(18):5923. doi: 10.3390/s24185923.
Volume reconstruction techniques are gaining increasing interest in medical domains due to their potential to learn complex 3D structural information from sparse 2D images. Recently, neural radiance fields (NeRF), which implicitly model continuous radiance fields based on multi-layer perceptrons to enable volume reconstruction of objects at arbitrary resolution, have gained traction in natural image volume reconstruction. However, the direct application of NeRF to medical volume reconstruction presents unique challenges due to differences in imaging principles, internal structure requirements, and boundary delineation. In this paper, we evaluate different NeRF techniques developed for natural images, including sampling strategies, feature encoding, and the use of complimentary features, by applying them to medical images. We evaluate three state-of-the-art NeRF techniques on four datasets of medical images of different complexity. Our goal is to identify the strengths, limitations, and future directions for integrating NeRF into the medical domain.
体积重建技术由于能够从稀疏的 2D 图像中学习复杂的 3D 结构信息,在医学领域越来越受到关注。最近,神经辐射场(NeRF)基于多层感知机隐式地对连续辐射场进行建模,从而能够以任意分辨率对物体进行体积重建,在自然图像体积重建中得到了广泛应用。然而,由于成像原理、内部结构要求和边界描绘的差异,直接将 NeRF 应用于医学体积重建存在独特的挑战。在本文中,我们通过将不同的 NeRF 技术应用于医学图像,评估了针对自然图像开发的不同 NeRF 技术,包括采样策略、特征编码和互补特征的使用。我们在四个具有不同复杂度的医学图像数据集上评估了三种最先进的 NeRF 技术。我们的目标是确定将 NeRF 技术集成到医学领域的优势、局限性和未来方向。