Suppr超能文献

视网膜静脉阻塞不同亚型风险预测模型的构建与验证

Construction and validation of risk prediction models for different subtypes of retinal vein occlusion.

作者信息

Liang Chunlan, Liu Lian, Yu Wenjuan, Shi Qi, Zheng Jiang, Lyu Jun, Zhong Jingxiang

机构信息

Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.

Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China.

出版信息

Adv Ophthalmol Pract Res. 2025 Mar 17;5(2):107-116. doi: 10.1016/j.aopr.2025.03.003. eCollection 2025 May-Jun.

Abstract

PURPOSE

While prognostic models for retinal vein occlusion (RVO) exist, subtype-specific risk prediction tools for central retinal vein occlusion (CRVO) and branch retinal vein occlusion (BRVO) remain limited. This study aimed to construct and validate distinct CRVO and BRVO risk stratification nomograms.

METHODS

We retrospectively analyzed electronic medical records from a tertiary hospital in Guangzhou (January 2010-November 2024). Non-RVO controls were matched 1:4 (CRVO) and 1:2 (BRVO) by sex and year of admission. The final cohorts included 630 patients (126 CRVO cases and 504 controls) and 813 patients (271 BRVO cases and 542 controls). Predictors encompassed clinical histories and laboratory indices. Multivariate regression identified independent risk factors, and model performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis (DCA).

RESULTS

The CRVO-nom and BRVO-nom highlighted significant predictors, including the neutrophil-to-lymphocyte ratio (NLR). Additional risk factors for CRVO included high-density lipoprotein cholesterol (HDL-C), platelet distribution width (PDW), history of diabetes, cerebral infarction, and coronary artery disease (CAD). For BRVO, significant predictors included a history of hypertension, age, and body mass index (BMI). The AUC for CRVO-nom was 0.80 (95% CI: 0.73-0.87) in the training set and 0.77 (95% CI: 0.65-0.86) in the validation set, while BRVO-nom yielded an AUC of 0.95 (95 ​%CI: 0.91-0.97) in the training set and 0.95 (95% CI: 0.89-0.98) in the validation set.

CONCLUSIONS

CRVO and BRVO exhibit distinct risk profiles. The developed nomograms-CRVO-nom and BRVO-nom-provide subtype-specific risk stratification with robust discrimination and clinical applicability. An online Shiny calculator facilitates real-time risk estimation, enabling targeted prevention for high-risk populations.

摘要

目的

虽然存在视网膜静脉阻塞(RVO)的预后模型,但针对视网膜中央静脉阻塞(CRVO)和视网膜分支静脉阻塞(BRVO)的亚型特异性风险预测工具仍然有限。本研究旨在构建并验证不同的CRVO和BRVO风险分层列线图。

方法

我们回顾性分析了广州一家三级医院(2010年1月至2024年11月)的电子病历。非RVO对照组按性别和入院年份以1:4(CRVO)和1:2(BRVO)进行匹配。最终队列包括630例患者(126例CRVO病例和504例对照)和813例患者(271例BRVO病例和542例对照)。预测因素包括临床病史和实验室指标。多变量回归确定独立危险因素,并使用受试者操作特征曲线下面积(AUC)、校准图和决策曲线分析(DCA)评估模型性能。

结果

CRVO列线图和BRVO列线图突出了显著的预测因素,包括中性粒细胞与淋巴细胞比值(NLR)。CRVO的其他危险因素包括高密度脂蛋白胆固醇(HDL-C)、血小板分布宽度(PDW)、糖尿病史、脑梗死和冠状动脉疾病(CAD)。对于BRVO,显著的预测因素包括高血压病史、年龄和体重指数(BMI)。CRVO列线图在训练集中的AUC为0.80(95%CI:0.73-0.87),在验证集中为0.77(95%CI:0.65-0.86),而BRVO列线图在训练集中的AUC为0.95(95%CI:0.91-0.97),在验证集中为0.95(95%CI:0.89-0.98)。

结论

CRVO和BRVO表现出不同的风险特征。所开发的列线图——CRVO列线图和BRVO列线图——提供了具有强大区分能力和临床适用性的亚型特异性风险分层。一个在线Shiny计算器便于实时风险估计,能够对高危人群进行有针对性的预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/217b/11995075/69f0db4703cb/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验