Suppr超能文献

使用三种定量构效关系工具对苯二氮䓬类杂质进行基于风险的计算机诱变评估。

Risk-based in silico mutagenic assessment of benzodiazepine impurities using three QSAR tools.

作者信息

Birudukota Srinivas, Mangalapu Bhaskar, Ramakrishna Ramesha Andagar, Halder Swagata

机构信息

Department of Chemistry, School of Applied Sciences, Rukmini Knowledge Park, REVA University, Kattigenahalli, Yelahanka, Bangalore 560064, India.

Trroy Life Sciences Pvt Ltd., Yelahanka New Town, Bangalore 560106, India.

出版信息

Toxicol Rep. 2025 Mar 25;14:102008. doi: 10.1016/j.toxrep.2025.102008. eCollection 2025 Jun.

Abstract

Benzodiazepines, widely prescribed psychoactive drugs, may contain DNA-reactive (mutagenic) impurities formed during synthesis, posing significant health risks. Owing to animal testing requirements, traditional in vitro and in vivo methods for assessing mutagenicity are time-consuming, costly, and ethically challenging. Computational approaches, particularly in silico (Q)SAR models, provide an efficient alternative for predicting toxicity based on chemical structure. This study evaluated the mutagenic potential of 88 benzodiazepine-related impurities using three freely accessible (Q)SAR tools: TOXTREE (Ames Test Alert by ISS), Toxicity Estimation Software Tool (TEST) with nearest neighbour and consensus models, and VEGA, a QSAR tool that integrates multiple mutagenicity prediction models, including the CAESAR Ames Mutagenicity Model. The tools were validated using a dataset of 99 chemicals with known Ames test results. TOXTREE exhibited the highest sensitivity (80.7 %) and accuracy (72.2 %) for predicting mutagenicity, whereas VEGA and TEST provided balanced accuracy (66.2 % and 66.7 %, respectively) and high specificity (74.5 % and 76.6 %, respectively). The risk assessment categorised 21 impurities as high risk, 11 as moderate-high risk, 28 as moderate-low risk, 22 as low risk, and 6 as equivocal, with expert review finalising classifications. The findings emphasise the integration of multiple (Q)SAR tools for early mutagenicity detection, regulatory compliance, and reduced reliance on animal testing. Further refinement of predictive models and additional computational approaches are recommended to enhance the accuracy of the risk assessment.

摘要

苯二氮䓬类药物是广泛使用的精神活性药物,可能含有合成过程中形成的具有DNA反应性(致突变性)的杂质,会带来重大健康风险。由于动物试验要求,传统的体外和体内致突变性评估方法耗时、成本高且存在伦理挑战。计算方法,特别是基于计算机的(定量)构效关系(QSAR)模型,为基于化学结构预测毒性提供了一种有效的替代方法。本研究使用三种免费的(QSAR)工具评估了88种苯二氮䓬类相关杂质的致突变潜力:TOXTREE(由ISS提供的Ames试验警报)、具有最近邻和共识模型的毒性估计软件工具(TEST)以及VEGA,这是一种整合了多个致突变性预测模型(包括CAESAR Ames致突变性模型)的QSAR工具。使用99种已知Ames试验结果的化学物质数据集对这些工具进行了验证。TOXTREE在预测致突变性方面表现出最高的灵敏度(80.7%)和准确性(72.2%),而VEGA和TEST则提供了平衡的准确性(分别为66.2%和66.7%)和高特异性(分别为74.5%和76.6%)。风险评估将21种杂质分类为高风险,11种为中高风险,28种为中低风险,22种为低风险,6种为 equivocal(模棱两可),最终由专家审查确定分类。研究结果强调了整合多种(QSAR)工具以进行早期致突变性检测、符合监管要求并减少对动物试验的依赖。建议进一步完善预测模型并采用更多计算方法,以提高风险评估的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8c0/11995136/f4ddababa657/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验