Suppr超能文献

基于Sp7蛋白序列预测种植体周围骨形成的深度神经网络

Deep Neural Networks Based on Sp7 Protein Sequence Prediction in Peri-Implant Bone Formation.

作者信息

Yadalam Pradeep Kumar, Ardila Carlos M

机构信息

Department of Periodontics, Saveetha Dental College, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.

Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.

出版信息

Int J Dent. 2025 Apr 7;2025:7583275. doi: 10.1155/ijod/7583275. eCollection 2025.

Abstract

Peri-implant bone regeneration is crucial for dental implant success, particularly in managing peri-implantitis, which causes inflammation and bone loss. SP7 (Osterix) is vital for osteoblast differentiation and bone matrix formation. Advances in deep neural networks (DNNs) offer new ways to analyze protein sequences, potentially improving our understanding of SP7's role in bone formation. This study aims to develop and utilize DNNs to predict the SP7 protein sequence and understand its role in peri-implant bone formation. and Methods: Sequences were retrieved from UniProt IDs Q8TDD2 and Q9V3Z2 using the UniProt dataset. The sequences were Sp7 fasta sequences. These sequences were located, and their quality was assessed. We built an architecture that can handle a wide range of input sequences using a DNN technique, with computing needs based on the length of the input sequences. Protein sequences were analyzed using a DNN architecture with ADAM optimizer over 50 epochs, achieving a sensitivity of 0.89 and a specificity of 0.82. The receiver operating characteristic (ROC) curve demonstrated high true-positive rates and low false-positive rates, indicating robust model performance. Precision-recall analysis underscored the model's effectiveness in handling imbalanced data, with significant area under the curve (AUC-PR). Epoch plots highlighted consistent model accuracy throughout training, confirming its reliability for protein sequence analysis. The DNN employed with ADAM optimizer demonstrated robust performance in analyzing protein sequences, achieving an accuracy of 0.85 and high sensitivity and specificity. The ROC curve highlighted the model's effectiveness in distinguishing true positives from false positives, which is essential for reliable protein classification. These findings suggest that the developed model is promising for enhancing predictive capabilities in computational biology and biomedical research, particularly in protein function prediction and therapeutic development applications.

摘要

种植体周围骨再生对于牙种植成功至关重要,尤其是在处理导致炎症和骨质流失的种植体周围炎方面。SP7(osterix)对成骨细胞分化和骨基质形成至关重要。深度神经网络(DNN)的进展为分析蛋白质序列提供了新方法,有可能增进我们对SP7在骨形成中作用的理解。本研究旨在开发并利用DNN来预测SP7蛋白质序列,并了解其在种植体周围骨形成中的作用。方法:使用UniProt数据集从UniProt ID Q8TDD2和Q9V3Z2中检索序列。这些序列是Sp7 fasta序列。找到这些序列并评估其质量。我们构建了一种架构,该架构可以使用DNN技术处理广泛的输入序列,计算需求基于输入序列的长度。使用具有ADAM优化器的DNN架构在50个轮次上分析蛋白质序列,灵敏度达到0.89,特异性达到0.82。受试者工作特征(ROC)曲线显示出高真阳性率和低假阳性率,表明模型性能稳健。精确召回分析强调了模型在处理不平衡数据方面的有效性,曲线下面积显著(AUC-PR)。轮次图突出显示了整个训练过程中模型的一致性准确性,证实了其在蛋白质序列分析中的可靠性。使用ADAM优化器的DNN在分析蛋白质序列方面表现出稳健的性能,准确率达到0.85,灵敏度和特异性高。ROC曲线突出了模型在区分真阳性和假阳性方面的有效性,这对于可靠的蛋白质分类至关重要。这些发现表明,所开发的模型在增强计算生物学和生物医学研究中的预测能力方面很有前景,特别是在蛋白质功能预测和治疗开发应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验