Suppr超能文献

DKK3和SERPINB5作为胃癌新型血清生物标志物:助力胃癌风险预测模型的开发

DKK3 and SERPINB5 as novel serum biomarkers for gastric cancer: facilitating the development of risk prediction models for gastric cancer.

作者信息

Liu Yan-Yu, Fu Yan-Fang, Yang Wan-Yu, Li Zheng, Lu Qian, Su Xin, Shi Jin, Wu Si-Qi, Liang Di, He Yu-Tong

机构信息

School of Public Health, Hebei Medical University, Shijiazhuang, China.

Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.

出版信息

Front Oncol. 2025 Mar 31;15:1536491. doi: 10.3389/fonc.2025.1536491. eCollection 2025.

Abstract

The existing gastric cancer (GC) risk prediction models based on biomarkers are limited. This study aims to identify new promising biomarkers for GC to develop a risk prediction model for effective assessment, screening, and early diagnosis. This study was conducted utilizing a large combined cohort for upper gastrointestinal cancer that was established in Hebei Province, China. General macro risk factors, Helicobacter pylori (H.pylori) infection status, and protein biomarkers were collected through questionnaire surveys and laboratory tests. Novel GC biomarkers were explored using data-independent acquisition (DIA) proteomics and enzyme-linked immunosorbent assay (ELISA). Multiple machine learning algorithms were used to identify key predictors for the GC risk prediction model, which was validated with an independent external cohort from multiple hospitals. A total of 530 participants aged 40 to 74 were analyzed, with 104 ultimately diagnosed with GC. Significant biomarkers in GC patients were identified by DIA combined ELISA, including elevated Keratin 7 (KRT7) and Mammary fibrostatin (SERPINB5) (P<0.001) and decreased Dickkopf-associated protein 3 (DKK3) (P<0.001). Factors such as sex, age, smoking status, alcohol consumption, family history of GC, H. pylori infection, DKK3 and SERPINB5 were used to create a multidimensional risk prediction model for GC. This model achieved an area under the curve (AUC) of 0.938 (95% confidence interval: 0.913-0.962). The risk prediction model developed in this study shows high accuracy and practical utility, serving as an effective preliminary screening tool for identifying high-risk individuals for GC.

摘要

现有的基于生物标志物的胃癌(GC)风险预测模型存在局限性。本研究旨在识别新的有前景的胃癌生物标志物,以开发一种用于有效评估、筛查和早期诊断的风险预测模型。本研究利用在中国河北省建立的一个大型上消化道癌联合队列进行。通过问卷调查和实验室检测收集一般宏观风险因素、幽门螺杆菌(H.pylori)感染状况和蛋白质生物标志物。使用数据非依赖采集(DIA)蛋白质组学和酶联免疫吸附测定(ELISA)探索新型胃癌生物标志物。使用多种机器学习算法识别胃癌风险预测模型的关键预测因子,并在来自多家医院的独立外部队列中进行验证。共分析了530名年龄在40至74岁之间的参与者,其中104人最终被诊断为胃癌。通过DIA联合ELISA确定了胃癌患者中的显著生物标志物,包括角蛋白7(KRT7)和乳腺纤维抑素(SERPINB5)升高(P<0.001)以及Dickkopf相关蛋白3(DKK3)降低(P<0.001)。将性别、年龄、吸烟状况、饮酒、胃癌家族史、H.pylori感染、DKK3和SERPINB5等因素用于创建胃癌的多维风险预测模型。该模型的曲线下面积(AUC)为0.938(95%置信区间:0.913 - 0.962)。本研究开发的风险预测模型显示出高准确性和实用性,可作为识别胃癌高危个体的有效初步筛查工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54c0/11994446/5f23aa88dca2/fonc-15-1536491-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验