Schörghuber Johannes, Bučková Nina, Heid Esther, Madsen Georg K H
Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria.
Phys Chem Chem Phys. 2025 Apr 30;27(17):9169-9177. doi: 10.1039/d5cp00396b.
Understanding processes at solid-liquid interfaces at the atomic level is important for applications such as electrocatalysis. Here we explore the effects of different step densities on the structure of interfacial water at the copper-water interface. Utilizing spatially resolved uncertainties, we develop an active learning framework and train a machine-learning force field (MLFF) based on dispersion-corrected density functional theory data. Using molecular dynamics simulations, we investigate structural properties of water molecules in the contact layer, including density profiles, angular distributions, and 2D pair correlation functions. In accordance with previous studies, we observe the formation of two sublayers within the contact layer at the Cu(111) surface, whereas the structure on surfaces with a high step density is dominated by the undercoordinated ridge atoms. By systematically decreasing the step density, we identify the cross-over to when the behavior observed at the flat surface can be locally recovered. Using dimensionality reduction, we identify four distinct types of Cu environments at the interfaces, providing insights into analyzing less idealized surfaces with MLFFs.
在原子水平上理解固液界面的过程对于电催化等应用至关重要。在此,我们探究了不同台阶密度对铜 - 水界面处界面水结构的影响。利用空间分辨不确定性,我们开发了一个主动学习框架,并基于色散校正密度泛函理论数据训练了一个机器学习力场(MLFF)。通过分子动力学模拟,我们研究了接触层中水分子的结构性质,包括密度分布、角度分布和二维对关联函数。与先前的研究一致,我们观察到在Cu(111)表面的接触层内形成了两个子层,而具有高台阶密度表面上的结构则由配位不足的脊原子主导。通过系统地降低台阶密度,我们确定了何时可以局部恢复在平坦表面观察到的行为的转变点。使用降维方法,我们在界面处识别出四种不同类型的铜环境,为使用MLFF分析不太理想化的表面提供了见解。