Suppr超能文献

深度集成与委员会在神经网络力场中的不确定性估计:比较与主动学习的应用。

Deep ensembles vs committees for uncertainty estimation in neural-network force fields: Comparison and application to active learning.

机构信息

Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria.

Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

出版信息

J Chem Phys. 2023 May 28;158(20). doi: 10.1063/5.0146905.

Abstract

A reliable uncertainty estimator is a key ingredient in the successful use of machine-learning force fields for predictive calculations. Important considerations are correlation with error, overhead during training and inference, and efficient workflows to systematically improve the force field. However, in the case of neural-network force fields, simple committees are often the only option considered due to their easy implementation. Here, we present a generalization of the deep-ensemble design based on multiheaded neural networks and a heteroscedastic loss. It can efficiently deal with uncertainties in both energy and forces and take sources of aleatoric uncertainty affecting the training data into account. We compare uncertainty metrics based on deep ensembles, committees, and bootstrap-aggregation ensembles using data for an ionic liquid and a perovskite surface. We demonstrate an adversarial approach to active learning to efficiently and progressively refine the force fields. That active learning workflow is realistically possible thanks to exceptionally fast training enabled by residual learning and a nonlinear learned optimizer.

摘要

可靠的不确定性估计是成功将机器学习力场应用于预测计算的关键因素。重要的考虑因素包括与误差的相关性、训练和推理期间的开销,以及系统地改进力场的高效工作流程。然而,在神经网络力场的情况下,由于其易于实现,通常仅考虑简单的委员会。在这里,我们提出了一种基于多头神经网络和异方差损失的深度集成设计的推广。它可以有效地处理能量和力中的不确定性,并考虑影响训练数据的随机不确定性源。我们使用离子液体和钙钛矿表面的数据比较了基于深度集成、委员会和自举聚合集成的不确定性度量。我们展示了一种对抗性的主动学习方法,以有效地逐步改进力场。由于基于残差学习和非线性学习优化器的快速训练,使得这种主动学习工作流程成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验