Suppr超能文献

水接触层在固/液界面水合作用及传输中的作用。

The role of the water contact layer on hydration and transport at solid/liquid interfaces.

作者信息

Gäding J, Della Balda V, Lan J, Konrad J, Iannuzzi M, Meißner R H, Tocci G

机构信息

Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany.

Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407877121. doi: 10.1073/pnas.2407877121. Epub 2024 Sep 11.

Abstract

Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS[Formula: see text], Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS[Formula: see text], on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.

摘要

了解与固体表面直接接触的水的纳米区域结构,即所谓的接触层,是量化宏观性质的关键,这些宏观性质对例如催化、冰核形成、纳米流体学、气体吸附和传感等领域具有重要意义。我们通过基于使用主动学习方案构建的从头算机器学习势的分子动力学模拟,探索了各种技术相关固体表面上的水接触层结构,这些固体表面包括石墨烯、MoS₂、Au(111)、Au(100)、Pt(111)和Pt(100),此前这些研究受到从头算方法的时间和长度尺度限制或力场不准确的阻碍。我们的结果表明,水接触层的面内分子间相关性在不同系统中差异很大:石墨烯和Au(111)表面上的接触层主要是均匀且各向同性的,而在MoS₂、Au(100)和Pt表面上则是不均匀且各向异性的,并且在这些表面上还形成了两个不同的子层。我们应用流体动力学和疏水效应理论,将接触层的能量起伏和特征长度尺度与润湿性、滑移、小疏水溶质的水合作用以及扩散渗透输运联系起来。因此,这项工作提供了水接触层的微观图像,并将其与液体/固体界面的宏观性质联系起来,这些宏观性质是通过实验测量的,并且与润湿性、疏水溶剂化、纳米流体学和渗透输运相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc6/11420213/686a056fe9f1/pnas.2407877121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验