Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
Acc Chem Res. 2011 Jan 18;44(1):47-57. doi: 10.1021/ar100099u. Epub 2010 Oct 15.
Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin-avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin-spacer-ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of noteworthy features are reminiscent of homogeneous catalysis, including straightforward access to both enantiomers of the product, the broad substrate scope, organic solvent tolerance, and an accessible range of reactions that are typical of homogeneous catalysts. Enzyme-like features include access to genetic optimization, an aqueous medium as the preferred solvent, Michaelis-Menten behavior, and single-substrate derivatization. The X-ray characterization of artificial metalloenzymes provides fascinating insight into possible enantioselection mechanisms involving a well-defined second coordination sphere environment. Thus, such artificial metalloenzymes combine attractive features of both homogeneous and enzymatic kingdoms. In the spirit of surface borrowing, that is, modulating ligand affinity by harnessing existing protein surfaces, this strategy can be extended to selectively binding streptavidin-incorporated biotinylated ruthenium pianostool complexes to telomeric DNA. This application paves the way for chemical biology applications of artificial metalloenzymes.
人工金属酶是通过将有机金属催化剂整合到宿主蛋白中来构建的。由此产生的杂种可以提供两种截然不同且通常互补的系统的最佳特性:均相和酶催化剂。辅酶可以通过共价、配位或超分子锚固策略定位。尽管最初的报道可以追溯到 20 世纪 70 年代后期,但用于对映选择性催化的人工金属酶仅在过去十年中才获得了显著的动力,其目的是补充均相、酶、多相和有机催化剂。受 Wilson 和 Whitesides 于 1978 年发表的有远见的报告的启发,我们利用生物素-亲和素技术在创建人工金属酶方面的潜力。由于生物素与亲和素或链霉亲和素的显著亲和力,将生物素锚定物共价连接到催化剂前体上可以确保,在化学计量添加(链霉)亲和素后,金属部分将定量整合到宿主蛋白中。在本报告中,我们回顾了我们在制备和优化这些人工金属酶方面的进展,从催化氢化作为模型开始,并在此基础上进行扩展。这些人工金属酶可以通过化学(生物素-间隔物-配体部分的变化)和遗传(亲和素或链霉亲和素的突变)手段进行优化。已经将这种化学生物学优化方案应用于各种对映选择性转化。迄今为止实施的反应包括:(i)铑-二膦配合物催化 N-保护的脱氢氨基酸的氢化(ee 高达 95%);(ii)钯-二膦配合物催化 1,3-二苯基烯丙基乙酸酯的烯丙基烷基化(ee 高达 95%);(iii)钌钢琴凳催化剂促进的前手性酮的转移氢化(ee 高达 97%的芳基-烷基酮和 ee 高达 90%的二烷基酮);(iv)钒-催化的前手性硫化物的氧化(ee 高达 93%)。一些值得注意的特点类似于均相催化,包括获得产物的两种对映体的简便方法、广泛的底物范围、有机溶剂耐受性以及对均相催化剂典型的可访问反应范围。酶样特征包括获得遗传优化、以水相作为首选溶剂、米氏动力学行为以及单一底物衍生化。人工金属酶的 X 射线表征为涉及明确定义的第二配位球环境的可能对映体选择机制提供了迷人的见解。因此,这种人工金属酶结合了均相和酶王国的吸引人的特征。本着表面借用的精神,即通过利用现有蛋白质表面来调节配体亲和力,该策略可以扩展到选择性结合包含链霉亲和素的生物素化钌钢琴凳配合物与端粒 DNA。该应用为人工金属酶的化学生物学应用铺平了道路。