Pickl Thomas, Stark Claire, Briganti Diego, Curcio Massimiliano, Pöthig Alexander
Catalysis Research Center (CRC) & TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer Str. 1, 85747 Garching, Germany.
Department of Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy.
J Am Chem Soc. 2025 Aug 6;147(31):27192-27196. doi: 10.1021/jacs.5c08210. Epub 2025 Jul 17.
Macrocycles typically hinder the reactivity of adjacent functional groups in mechanically interlocked molecules due to steric shielding. Herein, we report a [2]rotaxane in which a bulky macrocycle in fact accelerates deprotection of a Fmoc-derived stopper by 36-fold compared to a non-interlocked control. We rationalize this by a preorganization of the macrocycle and the stopper, exposing its reactive site for base abstraction. This is evidenced by extensive NMR, SC-XRD, and DFT studies, revealing highly directional CH-π interactions and hydrogen bonding between the interlocked components. Our findings highlight and structurally rationalize how entanglement can instead reactivity through precise spatial control. This concept paves the way for designing molecular machines with functional, reactivity-enhancing components.
大环通常会因空间屏蔽作用而阻碍机械互锁分子中相邻官能团的反应活性。在此,我们报道了一种[2]轮烷,其中一个庞大的大环实际上使芴甲氧羰基(Fmoc)衍生的封端基的脱保护速度比非互锁对照物快36倍。我们通过大环和封端基的预组织来解释这一现象,即大环和封端基的预组织使封端基的反应位点暴露以进行碱抽象。广泛的核磁共振(NMR)、单晶X射线衍射(SC-XRD)和密度泛函理论(DFT)研究证明了这一点,这些研究揭示了互锁组分之间高度定向的C-H-π相互作用和氢键。我们的研究结果突出并从结构上解释了缠结如何通过精确的空间控制来提高反应活性。这一概念为设计具有功能性、反应活性增强组分的分子机器铺平了道路。