Lv Jiaze, Tang Zhen, Zhang Qiman, Sun Han, OuYang Mingwei, Cao Yan
School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
ACS Nano. 2025 Apr 29;19(16):16133-16146. doi: 10.1021/acsnano.5c04051. Epub 2025 Apr 15.
Sodium metal, regarded as an ideal anode material for high-energy-density rechargeable sodium metal batteries (SMBs), faces critical challenges, such as sluggish Na transport kinetics and uncontrolled dendritic growth, which severely hinder its cycling stability and practical applications. Herein, the well-designed, multifunctional separator, UFS2@GF, constructed using metal-organic frameworks functionalized with fluorinated (-F) and sulfonic acid (-SOH) groups, synergistically provides more nucleation sites for Na deposition, thereby reducing the nucleation overpotential and achieving uniform deposition. The inorganic-rich solid electrolyte interphase induced by UFS2 facilitates a uniform Na flux and enhances charge transfer efficiency. Structural characterization and density functional theory calculations further demonstrate that the introduction of abundant sodiophilic sites provided by -F and -SOH significantly enhances Na transport kinetics by reducing the energy barriers for Na migration within the UFS2 framework, leading to a higher Na transference number, superior ionic conductivity, and accelerated ion transport. Because of these synergistic effects, the symmetric cell with UFS2@GF achieves stable performance, enabling stable cycling for over 2500 h at 0.25 mA cm while delivering an excellent specific capacity of 87.3 mA h g at 10C in Na∥NaV(PO) cells. These results highlight the critical role of synergistic functional group strategies in addressing the limitations of SMBs.
金属钠被视为高能密度可充电钠金属电池(SMBs)的理想负极材料,但面临着诸如钠传输动力学迟缓以及枝晶生长失控等关键挑战,这些问题严重阻碍了其循环稳定性和实际应用。在此,通过使用经氟化(-F)和磺酸(-SOH)基团功能化的金属有机框架构建的精心设计的多功能隔膜UFS2@GF,协同为钠沉积提供了更多的成核位点,从而降低了成核过电位并实现了均匀沉积。UFS2诱导形成的富含无机成分的固体电解质界面促进了均匀的钠通量并提高了电荷转移效率。结构表征和密度泛函理论计算进一步表明,-F和-SOH提供的大量亲钠位点的引入通过降低钠在UFS2框架内迁移的能垒,显著增强了钠传输动力学,从而导致更高的钠迁移数、优异的离子电导率和加速的离子传输。由于这些协同效应,具有UFS2@GF的对称电池实现了稳定的性能,在0.25 mA cm下能够稳定循环超过2500小时,同时在Na∥NaV(PO)电池中以10C的电流密度提供87.3 mA h g的优异比容量。这些结果突出了协同官能团策略在解决钠金属电池局限性方面的关键作用。