Suppr超能文献

用于量子计算的多尺度嵌入

Multiscale Embedding for Quantum Computing.

作者信息

Weisburn Leah P, Cho Minsik, Bensberg Moritz, Meitei Oinam Romesh, Reiher Markus, Van Voorhis Troy

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland.

出版信息

J Chem Theory Comput. 2025 May 13;21(9):4591-4603. doi: 10.1021/acs.jctc.5c00241. Epub 2025 Apr 15.

Abstract

We present a novel multiscale embedding scheme that links conventional QM/MM embedding and bootstrap embedding (BE) to allow simulations of large chemical systems on limited quantum devices. We also propose a mixed-basis BE scheme that facilitates BE calculations on extended systems using classical computers with limited memory resources. Benchmark data suggest the combination of these two strategies as a robust path in attaining the correlation energies of large realistic systems, combining the proven accuracy of BE with chemical and biological systems of interest in a lower computational cost method. Due to the flexible tunability of the resource requirements and systematic fragment construction, future developments in the realization of quantum computers naturally offer improved accuracy for multiscale BE calculations.

摘要

我们提出了一种新颖的多尺度嵌入方案,该方案将传统的量子力学/分子力学(QM/MM)嵌入与自洽场嵌入(BE)相结合,以实现对有限量子设备上的大型化学系统进行模拟。我们还提出了一种混合基BE方案,该方案有助于在内存资源有限的经典计算机上对扩展系统进行BE计算。基准数据表明,这两种策略的结合是获得大型实际系统相关能的可靠途径,它将BE在化学和生物系统中已被证实的准确性与较低的计算成本方法相结合。由于资源需求的灵活可调性和系统的片段构建,量子计算机实现方面的未来发展自然会为多尺度BE计算提供更高的精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验