Yang Fang, Ding Xuelian, Lv Guanghui
School of Ecology and Environment, Xinjiang University, Urumqi Xinjiang, 830017, China.
Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi, 830017, China.
BMC Plant Biol. 2025 Apr 15;25(1):480. doi: 10.1186/s12870-025-06513-x.
The essence of the plant drought tolerance mechanism lies in determining protein expression patterns, identifying key drought-tolerant proteins, and elucidating their association with specific functions within metabolic pathways. So far, there is limited information on the long-term drought tolerance of Haloxylon ammodendron and Haloxylon persicum grown in natural environments, as analyzed through proteomics. Therefore, this study conducted proteomic research on H. ammodendron and H. persicum grown in natural environments to identify their long-term drought-tolerant protein expression patterns. Totals of 71 and 348 differentially expressed proteins (DEPs) were identified in H. ammodendron and H. persicum, respectively. Bioinformatics analysis of DEPs reveals that H. ammodendron primarily generates a large amount of energy by overexpressing proteins related to carbohydrate metabolism pathways (pyruvate kinase, purple acid phosphatases and chitinase), and simultaneously encodes proteins capable of degrading misfolded/damaged proteins (tam3-transposase, enhancer of mRNA-decapping protein 4, and proteinase inhibitor I3), thus adapting to long-term drought environments. For H. persicum, most DEPs (enolase and UDP-xylose/xylose synthase) involved in metabolic pathways are up-regulated, indicating that it mainly adapts to long-term drought environments through mechanisms related to positive regulation of protein expression. These results offer crucial insights into how desert plants adapt to arid environments over the long term to maintain internal balance. In addition, the identified key drought-tolerant proteins can serve as candidate proteins for molecular breeding in the genus Haloxylon, aiming to develop new germplasm for desert ecosystem restoration.
植物耐旱机制的核心在于确定蛋白质表达模式、识别关键耐旱蛋白,并阐明它们在代谢途径中与特定功能的关联。到目前为止,通过蛋白质组学分析,关于自然环境中生长的梭梭和白梭梭长期耐旱性的信息有限。因此,本研究对自然环境中生长的梭梭和白梭梭进行了蛋白质组学研究,以确定它们长期耐旱的蛋白质表达模式。在梭梭和白梭梭中分别鉴定出71个和348个差异表达蛋白(DEP)。对DEP的生物信息学分析表明,梭梭主要通过过表达与碳水化合物代谢途径相关的蛋白质(丙酮酸激酶、紫色酸性磷酸酶和几丁质酶)来产生大量能量,同时编码能够降解错误折叠/受损蛋白质的蛋白质(tam3转座酶、mRNA去帽增强蛋白4和蛋白酶抑制剂I3),从而适应长期干旱环境。对于白梭梭,参与代谢途径的大多数DEP(烯醇化酶和UDP-木糖/木糖合酶)上调,表明它主要通过与蛋白质表达正调控相关的机制来适应长期干旱环境。这些结果为沙漠植物如何长期适应干旱环境以维持内部平衡提供了关键见解。此外,鉴定出的关键耐旱蛋白可作为梭梭属分子育种的候选蛋白,旨在开发用于沙漠生态系统恢复的新种质。