Abbas Ahmed Emad F, Gamal Mohammed, Naguib Ibrahim A, Halim Michael K, Said Basmat Amal M, Ghoneim Mohammed M, Mansour Mohmeed M A, Salem Yomna A
Faculty of Pharmacy, Analytical Chemistry Department, October 6 University, October 6 City, Giza, 12585, Egypt.
Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., Beni-Suef, Egypt.
BMC Chem. 2025 Apr 15;19(1):98. doi: 10.1186/s13065-025-01391-8.
The recent approval of the nasal spray combination of mometasone (MOM) and olopatadine (OLO) presents a significant analytical challenge, as only a single reported method exists for its determination, deviating from eco-friendly practices. This study addresses this critical gap by pioneering the application of machine learning techniques to develop robust UV spectrophotometric approach for the simultaneous quantification of MOM and OLO, along with two genotoxic impurities: 4-dimethylamino pyridine (DAP) and methyl para-toluene sulfonate (MTS). By simultaneously determining these highly concerning genotoxic impurities and active pharmaceutical ingredients, this method underscores its paramount significance in upholding rigorous pharmaceutical quality standards and safeguarding patient safety. Applying the multilevel-multifactor experimental design, the calibration set was meticulously chosen at five different concentrations, yielding 25 calibration mixtures with central levels of 4, 46.5, 2.5, and 3 µg/mL for MOM, OLA, MTS, and DAP, respectively. The key innovation lies in the strategic implementation of the Kennard-Stone Clustering Algorithm to create a robust validation set of thirteen mixtures, resolving the limitations of reported chemometric methods' random data splitting. This approach ensures unbiased evaluation across the full concentration space, improving the method's reliability and sustainability. The robustness of this approach was rigorously tested using five distinct chemometric models: principal component regression, classical least squares, partial least squares, genetic algorithm-partial least squares, and multivariate curve resolution-alternating least squares, demonstrating its broad applicability across diverse modeling techniques. All models successfully determined all components with excellent recovery, low bias-corrected prediction, and adequate limits of detection. The Greenness Index Spider Charts and the Green Solvents Selection Tool were used to choose environmentally conscious solvents. A comprehensive sustainability assessment employed six state-of-the-art tools, including the national environmental method index, complementary green analytical procedure index, analytical greenness metric, blue applicability grade index, carbon footprint analysis, and the red-green-blue 12 metrics. Favorable results across all metrics affirmed the method's eco-friendliness, real-world applicability, and cost-effectiveness, supporting sustainable development goals in pharmaceutical quality control processes.
最近批准的莫米松(MOM)和奥洛他定(OLO)鼻喷雾剂组合带来了重大的分析挑战,因为目前仅有一篇报道的方法可用于其测定,且该方法不符合环保要求。本研究通过率先应用机器学习技术,开发了一种稳健的紫外分光光度法,用于同时定量测定MOM、OLO以及两种基因毒性杂质:4-二甲氨基吡啶(DAP)和对甲苯磺酸甲酯(MTS),从而填补了这一关键空白。通过同时测定这些高度相关的基因毒性杂质和活性药物成分,该方法凸显了其在维持严格的药品质量标准和保障患者安全方面的至关重要性。应用多级多因素实验设计,在五个不同浓度下精心选择校准集,分别得到25种校准混合物,其中MOM、OLA、MTS和DAP的中心水平分别为4、46.5、2.5和3μg/mL。关键创新在于战略性地实施肯纳德-斯通聚类算法,以创建一个由十三种混合物组成的稳健验证集,解决了报道的化学计量学方法随机数据拆分的局限性。这种方法确保了在整个浓度空间内进行无偏评估,提高了方法的可靠性和可持续性。使用五种不同的化学计量学模型对该方法的稳健性进行了严格测试:主成分回归、经典最小二乘法、偏最小二乘法、遗传算法-偏最小二乘法和多元曲线分辨-交替最小二乘法,证明了其在各种建模技术中的广泛适用性。所有模型均成功测定了所有成分,回收率良好,偏差校正预测值低,检测限适当。使用绿色指数蜘蛛图和绿色溶剂选择工具来选择具有环保意识的溶剂。采用六种先进工具进行了全面的可持续性评估,包括国家环境方法指数、互补绿色分析程序指数、分析绿色度指标、蓝色适用性等级指数、碳足迹分析以及红绿蓝12指标。所有指标的良好结果证实了该方法的生态友好性、实际适用性和成本效益,支持了药品质量控制过程中的可持续发展目标。