Hamad Ahmed Abdulhafez, Mohammed Bassam Shaaban, Abdelsalam Ouf Abdelsalam Mohamed, Darwish Ibrahim A, Ashkar Abdulsalam, Haredy Ahmed M
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt.
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University, Shebin El-Kom, Menoufia, 32511, Egypt.
J Fluoresc. 2025 Jun 30. doi: 10.1007/s10895-025-04418-4.
A fluorescence quenching strategy was conceptualized to establish an environmentally compatible analytical system for trace-level detection of Linagliptin (LGP), an anti-diabetic pharmaceutical compound. This research delineates a biochemical sensing mechanism relying on an electrostatic coupling between LGP and Erythrosine B (EB), a biologically certified fluorophore, within optimized acidic parameters. The molecular association induced a concentration-dependent reduction in EB's intrinsic emission intensity at λ 554 nm, attributed to the generation of a non-luminescent LGP-EB supramolecular assembly. Methodical optimization of operational parameters governing the recognition process-including pH modulation, stoichiometric ratios, and temporal stability-yielded a linear response across 0.30-2.50 µg/mL, with detection and quantification capacities reaching 0.0286 µg/mL and 0.0943 µg/mL, respectively. Validation studies confirmed adherence to International Council for Harmonization (ICH) criteria, exhibiting ≤ 1.9% relative standard deviation in precision assessments and 98.9-100.8% recovery rates in spiked samples. The technique's efficacy was verified across multiple matrices, encompassing raw drug substances, pharmaceutical formulations, and simulated biological media. Ecological compatibility was rigorously evaluated through modern sustainability metrics aligned with green analytical chemistry principles. Implementation of the White Analytical Chemistry (WAC) protocol via the RGB 12 algorithm designated the methodology as "environmentally considerate," reflecting minimal reagent consumption and energy requirements. Concurrent analysis using the BAGI (Biocompatible Analytical Greenness Index) tool produced exceptional scores in ecological safety and methodological adaptability, confirming its proficiency in harmonizing analytical precision with sustainable practices. This dual-focused approach addresses critical needs in pharmaceutical quality control while advancing eco-responsible analytical methodologies.
一种荧光猝灭策略被构思出来,以建立一个环境兼容的分析系统,用于痕量检测抗糖尿病药物化合物利格列汀(LGP)。本研究描述了一种生化传感机制,该机制依赖于在优化的酸性参数下,LGP与生物认证的荧光团赤藓红B(EB)之间的静电耦合。分子缔合导致EB在λ 554 nm处的固有发射强度呈浓度依赖性降低,这归因于非发光LGP-EB超分子聚集体的形成。对控制识别过程的操作参数进行系统优化,包括pH调节、化学计量比和时间稳定性,在0.30-2.50 µg/mL范围内产生线性响应,检测和定量能力分别达到0.0286 µg/mL和0.0943 µg/mL。验证研究证实符合国际协调理事会(ICH)标准,在精密度评估中相对标准偏差≤1.9%,在加标样品中的回收率为98.9-100.8%。该技术在多种基质中得到验证,包括原料药、药物制剂和模拟生物介质。通过与绿色分析化学原理一致的现代可持续性指标,对生态兼容性进行了严格评估。通过RGB 12算法实施白色分析化学(WAC)协议,将该方法指定为“环境友好型”,这反映了试剂消耗和能源需求最少。使用生物相容性分析绿色指数(BAGI)工具进行的并行分析在生态安全性和方法适应性方面取得了优异成绩,证实了其在将分析精度与可持续实践相协调方面的能力。这种双重点方法满足了药品质量控制中的关键需求,同时推进了对生态负责的分析方法。