Suppr超能文献

使用紫外分光光度法和化学计量学模型同时定量一种含有麦角胺、保泰松、咖啡因、卡米洛芬和甲氯芬那明的新型五组分抗偏头痛制剂。

Simultaneously quantifying a novel five-component anti- migraine formulation containing ergotamine, propyphenazone, caffeine, camylofin, and mecloxamine using UV spectrophotometry and chemometric models.

作者信息

Abbas Ahmed Emad F, Abdelshafi Nahla A, Gamal Mohammed, Halim Michael K, Said Basmat Amal M, Naguib Ibrahim A, Mansour Mohmeed M A, Morshedy Samir, Salem Yomna A

机构信息

Faculty of Pharmacy, Analytical Chemistry Department, October 6 University, 6 October City, 12585, Giza, Egypt.

Department of Pharmaceutical Analytical Chemistry, School of Pharmacy, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.

出版信息

BMC Chem. 2024 Nov 20;18(1):233. doi: 10.1186/s13065-024-01339-4.

Abstract

This study presents a new method for simultaneously quantifying a complex anti-migraine formulation containing five components (ergotamine, propyphenazone, caffeine, camylofin, and mecloxamine) using UV spectrophotometry and chemometric models. The formulation presents analytical challenges due to the wide variation in component concentrations (ERG: PRO: CAF: CAM: MEC ratio of 0.075:20:8:5:4) and highly overlapping UV spectra. To create a comprehensive validation dataset, the Kennard-Stone Clustering Algorithm was used to address the limitations of arbitrary data partitioning in chemometric methods. Three different chemometric models were evaluated: Classical Least Squares (CLS), Partial Least Squares (PLS), and Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Among these, MCR-ALS demonstrated excellent performance, achieving recovery values of 98-102% for all components, accompanied by minimal root mean square errors of calibration (0.072-0.378) and prediction (0.077-0.404). Moreover, the model exhibited high accuracy, with relative errors ranging from 1.936 to 3.121%, bias-corrected mean square errors between 0.074 and 0.389, and a good sensitivity (0.2097-1.2898 μg mL) for all components. The Elliptical Joint Confidence Region analysis further confirmed the predictive performance of the models, with MCR-ALS consistently showing the smallest ellipses closest to the ideal point (slope = 1, intercept = 0) for most analytes, indicating superior accuracy and precision. The approach's sustainability was rigorously assessed using six advanced metrics, validating its environmental friendliness, economic viability, and practical application. This approach effectively resolves complex pharmaceutical formulations, contributing to sustainable development objectives in quality control processes.

摘要

本研究提出了一种新方法,可利用紫外分光光度法和化学计量学模型同时定量分析一种含有五种成分(麦角胺、保泰松、咖啡因、卡米洛芬和甲氯苯那敏)的复合抗偏头痛制剂。由于各成分浓度差异很大(麦角胺:保泰松:咖啡因:卡米洛芬:甲氯苯那敏的比例为0.075:20:8:5:4)且紫外光谱高度重叠,该制剂存在分析挑战。为创建一个全面的验证数据集,采用肯纳德-斯通聚类算法来解决化学计量学方法中任意数据划分的局限性。评估了三种不同的化学计量学模型:经典最小二乘法(CLS)、偏最小二乘法(PLS)和多元曲线分辨交替最小二乘法(MCR-ALS)。其中,MCR-ALS表现出色,所有成分的回收率均达到98-102%,同时校准的均方根误差最小(0.072-0.378),预测的均方根误差也最小(0.077-0.404)。此外,该模型具有很高的准确性,相对误差范围为1.936至3.121%,偏差校正均方误差在0.074至0.389之间,对所有成分都具有良好的灵敏度(0.2097-1.2898μg/mL)。椭圆联合置信区域分析进一步证实了模型的预测性能,对于大多数分析物,MCR-ALS始终显示出最接近理想点(斜率 = 1,截距 = 0)的最小椭圆,表明其具有更高的准确性和精密度。使用六个先进指标对该方法的可持续性进行了严格评估,验证了其环境友好性、经济可行性和实际应用价值。这种方法有效地解决了复杂的药物制剂问题,有助于质量控制过程中的可持续发展目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ad/11580349/35a3ddec4e5b/13065_2024_1339_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验