Suppr超能文献

通过机器学习算法进行性别分类的准确率——人耳和鼻子的形态计量学变量

Sex classification accuracy through machine learning algorithms - morphometric variables of human ear and nose.

作者信息

Kaur Tej, Krishan Kewal, Sharma Akanksha, Guleria Ankita, Sharma Vishal

机构信息

Institute of Forensic Science and Criminology, Panjab University, Sector-14, Chandigarh, India.

Department of Anthropology, (UGC Centre of Advanced Study), Panjab University, Sector-14, Chandigarh, India.

出版信息

BMC Res Notes. 2025 Apr 15;18(1):169. doi: 10.1186/s13104-025-07185-4.

Abstract

OBJECTIVE

Sex determination is an important parameter for personal identification in forensic and medico-legal examinations. The study aims at predicting sex accuracy from different parameters of ear and nose by using a novel approach of Machine Learning Library, 'PyCaret'.

RESULTS

The present research was carried out on 508 participants (264 males and 244 females) aged 18-35 years from north India. Various ear and nose measurements were recorded on each participant. PyCaret employs a train-eval-testing validation approach, yielding a comprehensive output of the model in the form of a table that consolidates the average scores of all models over ten folds, including the respective time values. These models were compared based on performance metrics, and time taken. The logistic regression classifier emerged as the top-performing model, achieving the highest scores of 86.75% for sex prediction accuracy. Nasal breadth has been concluded as the most significant variable in accurate sex prediction. The findings indicate that the majority of the ear and nose characteristics significantly contribute to sexual dimorphism. This novel approach for sex classification can be efficiently used in a variety of forensic examinations and crime scene investigation especially where there is a need for estimation of sex for personal identification.

摘要

目的

性别鉴定是法医和法医学检查中个人识别的重要参数。本研究旨在通过使用机器学习库“PyCaret”的新方法,从耳朵和鼻子的不同参数预测性别准确性。

结果

本研究对来自印度北部的508名年龄在18至35岁之间的参与者(264名男性和244名女性)进行。记录了每位参与者耳朵和鼻子的各种测量数据。PyCaret采用训练-评估-测试验证方法,以表格形式生成模型的综合输出,该表格汇总了所有模型在十次折叠中的平均分数,包括各自的时间值。根据性能指标和所用时间对这些模型进行了比较。逻辑回归分类器成为表现最佳的模型,性别预测准确率达到了86.75%的最高分。鼻宽被认为是准确性别预测中最显著的变量。研究结果表明,大多数耳朵和鼻子特征对性别二态性有显著贡献。这种新颖的性别分类方法可有效地用于各种法医检查和犯罪现场调查,特别是在需要进行个人识别的性别估计的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ef/11998274/08323c88db62/13104_2025_7185_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验