Suppr超能文献

结肠癌中肿瘤浸润淋巴细胞(TILs)的病理组学图像分析

Pathomics Image Analysis of Tumor Infiltrating Lymphocytes (TILs) in Colon Cancer.

作者信息

Zhang Yuwei, Abousamra Shahira, Hasan Mahmudul, Torre-Healy Luke, Krichevsky Spencer, Shrestha Sampurna, Bremer Erich, Oldridge Derek A, Rech Andrew J, Furth Emma E, Bocklage Therese J, Levens Justin S, Hands Isaac, Durbin Erich B, Samaras Dimitris, Kurc Tahsin, Saltz Joel H, Gupta Rajarsi

出版信息

Res Sq. 2025 Apr 1:rs.3.rs-6173056. doi: 10.21203/rs.3.rs-6173056/v1.

Abstract

We developed a deep learning Pathomics image analysis workflow to generate spatial Tumor-TIL maps to visualize and quantify the abundance and spatial distribution of tumor infiltrating lymphocytes (TILs) in colon cancer. Colon cancer and lymphocyte detection in hematoxylin and eosin (H&E) stained whole slide images (WSIs) has revealed complex immuno-oncologic interactions that form TIL-rich and TIL-poor tumor habitats, which are unique in each patient sample. We compute Tumor%, total lymphocyte%, and TILs% as the proportion of the colon cancer microenvironment occupied by intratumoral lymphocytes for each WSI. Kaplan-Meier survival analyses and multivariate Cox regression were utilized to evaluate the prognostic significance of TILs% as a Pathomics biomarker. High TILs% was associated with improved overall survival (OS) and progression-free interval (PFI) in localized and metastatic colon cancer and other clinicopathologic variables, supporting the routine use of Pathomics Tumor-TIL mapping in biomedical research, clinical trials, laboratory medicine, and precision oncology.

摘要

我们开发了一种深度学习病理组学图像分析工作流程,以生成空间肿瘤浸润淋巴细胞(TIL)图谱,用于可视化和量化结肠癌中肿瘤浸润淋巴细胞(TIL)的丰度和空间分布。在苏木精和伊红(H&E)染色的全切片图像(WSI)中进行结肠癌和淋巴细胞检测,揭示了形成富含TIL和缺乏TIL的肿瘤微环境的复杂免疫肿瘤学相互作用,这些微环境在每个患者样本中都是独特的。我们计算每个WSI中肿瘤内淋巴细胞占据的结肠癌微环境比例,即肿瘤占比、总淋巴细胞占比和TIL占比。采用Kaplan-Meier生存分析和多变量Cox回归来评估TIL占比作为病理组学生物标志物的预后意义。高TIL占比与局限性和转移性结肠癌的总生存期(OS)改善以及无进展生存期(PFI)改善以及其他临床病理变量相关,支持在生物医学研究、临床试验、检验医学和精准肿瘤学中常规使用病理组学肿瘤-TIL图谱。

相似文献

本文引用的文献

6
Colorectal Cancer Immunotherapy: State of the Art and Future Directions.结直肠癌免疫疗法:现状与未来方向。
Gastro Hep Adv. 2023;2(8):1103-1119. doi: 10.1016/j.gastha.2023.09.007. Epub 2023 Sep 19.
8
The future landscape of large language models in medicine.医学领域大语言模型的未来前景。
Commun Med (Lond). 2023 Oct 10;3(1):141. doi: 10.1038/s43856-023-00370-1.
10
Large language models in medicine.医学中的大型语言模型。
Nat Med. 2023 Aug;29(8):1930-1940. doi: 10.1038/s41591-023-02448-8. Epub 2023 Jul 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验