Moll Philip Jw
Max-Planck-Institute for the Structure and Dynamics of Matter, Building 900, Luruper Chaussee 149, Hamburg, Germany.
Commun Mater. 2025;6(1):73. doi: 10.1038/s43246-025-00788-1. Epub 2025 Apr 13.
The design of advanced functionality in superconducting electronics usually focuses on materials engineering, either in heterostructures or in compounds of unconventional quantum materials. Here we demonstrate a different strategy to bespoke function by controlling the 3D shape of superconductors on the micron-scale. As a demonstration, a large superconducting diode effect is engineered solely by 3D shape design of a conventional superconductor, ion-beam deposited tungsten. Its highly efficient diode behavior appears from its triangular cross-section when vortices break time-reversal and all mirror symmetries. Interestingly reciprocity is observed at four low-symmetry field angles where diode behavior would be expected. This can be understood as a geometric mechanism unique to triangular superconductors. Geometry and topology induce a rich internal structure due to the high-dimensional tuning parameter space of 3D microstructures, inaccessible to the conventional 2D design strategies in thin films.
超导电子学中先进功能的设计通常聚焦于材料工程,无论是在异质结构中还是在非常规量子材料的化合物中。在此,我们展示了一种不同的策略,即通过在微米尺度上控制超导体的三维形状来定制功能。作为演示,仅通过对传统超导体——离子束沉积钨进行三维形状设计,就设计出了一种大的超导二极管效应。当涡旋打破时间反演和所有镜面对称性时,其高效的二极管行为源于其三角形横截面。有趣的是,在预期会出现二极管行为的四个低对称场角处观察到了互易性。这可以理解为三角形超导体特有的一种几何机制。由于三维微结构的高维调谐参数空间,几何形状和拓扑结构会诱导出丰富的内部结构,这是薄膜中传统二维设计策略无法实现的。