Orús Pablo, Sigloch Fabian, Sangiao Soraya, De Teresa José María
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Nanomaterials (Basel). 2022 Apr 15;12(8):1367. doi: 10.3390/nano12081367.
Since its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of : nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity.
自1911年被发现以来,超导在物理学和材料科学的多个领域一直是一个同样具有启发性和吸引力的研究领域,涵盖从其最基本的理论理解到在不同工程领域的实际应用。超导材料的制造可以通过纳米图案化技术缩小到纳米尺度,这些技术利用聚焦的离子束或电子束在一步中分解气态前驱体。这些方法无需使用抗蚀剂,能够对纳米结构进行有针对性的、高度灵活的纳米图案化,横向分辨率在10纳米至30纳米范围内。在这篇综述中,介绍了这些纳米制造技术的基本原理,随后对利用它们生长超导材料的已发表工作进行了文献综述,其中最引人注目的是基于钨、铌、钼、碳和铅的材料。还介绍了这些材料在功能器件中的几个应用实例,涉及超导邻近效应、涡旋动力学、电场效应以及约瑟夫森结和纳米超导量子干涉器件的纳米制造。由于它们提供的图案化灵活性,这两种技术对于超导领域的基础研究和应用研究都是一种强大且便捷的方法。