I Govindharaj, T Ramesh, A Poongodai, P Senthilkumar K, P Udayasankaran, S Ravichandran
Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Tamil Nadu, 600062, India.
Department of Computer Science and Engineering, R.M.K Engineering College, Thiruvallur, Tamil Nadu, 601206, India.
MethodsX. 2025 Mar 31;14:103285. doi: 10.1016/j.mex.2025.103285. eCollection 2025 Jun.
The worldwide prevalence of glaucoma makes it a major reason for blindness thus proper early diagnosis remains essential for preventing major vision deterioration. Current glaucoma screening methods that need expert handling prove to be time-intensive and complicated before yielding appropriate diagnosis and treatment. Our system addresses these difficulties through an automated glaucoma screening platform which combines advanced segmentation methods with classification approaches. A hybrid segmentation method combines Grey Wolf Optimization Algorithm with U-Shaped Networks to obtain precise extraction of the optic disc regions in retinal fundus images. Through GWOA the network achieves optimal segmentation by adopting wolf-inspired behaviors such as circular and jumping movements to identify diverse image textures. The glaucoma classification depends on CapsNet as a deep learning model that provides exceptional image detection to ensure precise diagnosis. The combination of our method delivers 96.01 % segmentation together with classification precision which outstrips traditional approaches while indicating strong capabilities for discovering glaucoma at early stages. This automated diagnosis system elevates clinical accuracy levels through an automated screening method that solves manual process limitations. The detection framework produces better accuracy to improve clinical results in a strong effort to minimize glaucoma-induced blindness worldwide and display its capabilities in real clinical environments.•Hybrid GWOA-UNet++ for precise optic disc segmentation.•CapsNet-based classification for robust glaucoma detection.•Achieved 96.01 % accuracy, surpassing existing methods.
青光眼在全球范围内的高患病率使其成为导致失明的主要原因之一,因此,早期进行正确诊断对于预防视力严重恶化至关重要。目前的青光眼筛查方法需要专家操作,在做出正确诊断和治疗之前,这些方法既耗时又复杂。我们的系统通过一个自动化青光眼筛查平台解决了这些难题,该平台将先进的分割方法与分类方法相结合。一种混合分割方法将灰狼优化算法与U型网络相结合,以精确提取眼底图像中的视盘区域。通过灰狼优化算法,该网络采用如圆周运动和跳跃运动等受狼启发的行为来识别各种图像纹理,从而实现最佳分割。青光眼分类依赖于胶囊网络(CapsNet)这一深度学习模型,该模型能提供出色的图像检测,以确保准确诊断。我们的方法相结合,实现了96.01%的分割精度和分类精度,超过了传统方法,同时显示出在早期发现青光眼的强大能力。这种自动诊断系统通过一种解决手动流程局限性的自动筛查方法,提高了临床诊断的准确性。该检测框架具有更高的准确性,以改善临床结果,努力在全球范围内将青光眼导致的失明降至最低,并在实际临床环境中展示其能力。
• 用于精确视盘分割的混合灰狼优化算法-U型网络++。
• 基于胶囊网络的分类用于可靠的青光眼检测。
• 准确率达到96.01%,超过现有方法。