Suppr超能文献

一种用于胰腺和胰腺肿瘤分割的优化两阶段U-Net方法。

An optimized two stage U-Net approach for segmentation of pancreas and pancreatic tumor.

作者信息

Ghorpade Himali, Kolhar Shrikrishna, Jagtap Jayant, Chakraborty Jayasree

机构信息

Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India.

Marik Institute of Computing, Artificial Intelligence, Robotics and Cybernetics, NIMS University Rajasthan, Jaipur, India.

出版信息

MethodsX. 2024 Oct 4;13:102995. doi: 10.1016/j.mex.2024.102995. eCollection 2024 Dec.

Abstract

The segmentation of pancreas and pancreatic tumor remain a persistent challenge for radiologists. Consequently, it is essential to develop automated segmentation methods to address this task. U-Net based models are most often used among various deep learning-based techniques in tumor segmentation. This paper introduces an innovative hybrid two-stage U-Net model for segmenting both the pancreas and pancreatic tumors. The optimization technique, used in this approach, involves a combination of meta-heuristic optimization algorithms namely, Grey Wolf Border Collie Optimization (GWBCO) technique, combining the Grey Wolf Optimization algorithm and the Border Collie Optimization algorithm. Our approach is evaluated using key parameters, such as Dice Similarity Coefficient (DSC), Jaccard Index (JI), sensitivity, specificity and precision to assess its effectiveness and achieves a DSC of 93.33 % for pancreas segmentation. Additionally, the model also achieves high DSC of 91.46 % for pancreatic tumor segmentation. This method helps in improving the diagnostic accuracy and assists medical professionals to provide treatment at an early stage with precise intervention. The method offers•Two-stage U-Net model addresses both pancreas and tumor segmentation.•Combination of two metaheuristic optimization algorithms, Grey Wolf and Border Collie for enhanced performance.•High dice similarity coefficient for pancreas and tumor segmentation.

摘要

胰腺和胰腺肿瘤的分割对放射科医生来说仍然是一个持续存在的挑战。因此,开发自动分割方法来解决这项任务至关重要。在各种基于深度学习的肿瘤分割技术中,基于U-Net的模型最为常用。本文介绍了一种创新的混合两阶段U-Net模型,用于分割胰腺和胰腺肿瘤。该方法中使用的优化技术涉及元启发式优化算法的组合,即灰狼边境牧羊犬优化(GWBCO)技术,它结合了灰狼优化算法和边境牧羊犬优化算法。我们的方法使用关键参数进行评估,如骰子相似系数(DSC)、杰卡德指数(JI)、灵敏度、特异性和精确度,以评估其有效性,胰腺分割的DSC达到了93.33%。此外,该模型在胰腺肿瘤分割方面也实现了91.46%的高DSC。这种方法有助于提高诊断准确性,并协助医学专业人员在早期提供精确干预的治疗。该方法具有以下特点:

  • 两阶段U-Net模型可同时处理胰腺和肿瘤分割。

  • 结合了两种元启发式优化算法,灰狼算法和边境牧羊犬算法,以提高性能。

  • 胰腺和肿瘤分割的骰子相似系数高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af26/11491966/9d3647911c82/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验