Rodríguez-Alonso Pablo, Chaskovska Viktoriya, Venegas-Bustos Desiré, Herraiz Alba, Alonso Matilde, Rodríguez-Cabello Jose Carlos
Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER-BBN, Edificio LUCIA, Universidad de Valladolid, Valladolid, 47011, Spain.
Technical Proteins Nanobiotechnology S.L., Valladolid, Spain.
Mater Today Bio. 2025 Mar 29;32:101720. doi: 10.1016/j.mtbio.2025.101720. eCollection 2025 Jun.
Recombinant protein production is crucial for biomedical and industrial applications; however, achieving high yields for complex protein-like biomaterials such as elastin-like recombinamers (ELRs) remains challenging. ELRs, protein-based polymers derived from tropoelastin, emulate the mechanical and bioactive properties of natural tissues, making them valuable for numerous uses. Despite their promise, implementing a sophisticated molecular system for ELR production in involves overcoming multiple hurdles, including metabolic bottlenecks and low yields. In this study, we employed a CRISPR activation (CRISPRa) system to enhance ELR expression in . Although further optimization is required to reach industrial-scale outputs, our findings establish a proof of concept for taking advantage of CRISPRa to boost recombinamers yields. Such improvements represent a crucial step toward scalable production, facilitating the commercial adoption of ELRs and, in general, recombinamers not only in biomedical applications but also in broader industries that stand to benefit from these versatile biomaterials.
重组蛋白生产对于生物医学和工业应用至关重要;然而,要实现复杂的类蛋白生物材料(如弹性蛋白样重组聚合物,ELRs)的高产率仍然具有挑战性。ELRs是源自原弹性蛋白的基于蛋白质的聚合物,模拟天然组织的机械和生物活性特性,使其在众多用途中具有价值。尽管它们前景广阔,但在[具体生物]中实施用于ELR生产的复杂分子系统涉及克服多个障碍,包括代谢瓶颈和低产率。在本研究中,我们采用了CRISPR激活(CRISPRa)系统来增强[具体生物]中ELR的表达。尽管需要进一步优化以达到工业规模产量,但我们的研究结果为利用CRISPRa提高重组聚合物产量建立了概念验证。此类改进是迈向可扩展生产的关键一步,有助于ELRs以及一般而言的重组聚合物在生物医学应用以及更广泛的有望从这些多功能生物材料中受益的行业中的商业应用。