Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA.
Nat Commun. 2018 Jun 27;9(1):2489. doi: 10.1038/s41467-018-04901-6.
Methods to regulate gene expression programs in bacterial cells are limited by the absence of effective gene activators. To address this challenge, we have developed synthetic bacterial transcriptional activators in E. coli by linking activation domains to programmable CRISPR-Cas DNA binding domains. Effective gene activation requires target sites situated in a narrow region just upstream of the transcription start site, in sharp contrast to the relatively flexible target site requirements for gene activation in eukaryotic cells. Together with existing tools for CRISPRi gene repression, these bacterial activators enable programmable control over multiple genes with simultaneous activation and repression. Further, the entire gene expression program can be switched on by inducing expression of the CRISPR-Cas system. This work will provide a foundation for engineering synthetic bacterial cellular devices with applications including diagnostics, therapeutics, and industrial biosynthesis.
方法来调节基因表达程序的细菌细胞是有限的,因为缺乏有效的基因激活剂。为了解决这个挑战,我们已经开发了合成细菌转录激活剂在大肠杆菌通过连接激活域可编程 CRISPR-Cas DNA 结合域。有效的基因激活需要目标位点位于一个狭窄的区域就在转录起始位点的上游,与相对灵活的目标站点要求基因激活在真核细胞。与现有的工具 CRISPRi 基因抑制,这些细菌激活剂能够可编程控制多个基因的同时激活和抑制。此外,整个基因表达程序可以通过诱导表达的 CRISPR-Cas 系统。这项工作将为工程合成细菌细胞设备提供一个基础,包括诊断,治疗和工业生物合成。