Suppr超能文献

数字健康干预对围产期抑郁症的有效性:一项系统评价和荟萃分析。

Effectiveness of digital health interventions for perinatal depression: a systematic review and meta-analysis.

作者信息

Anyanwu Ifunanya Stellamaris, Jenkins Judy

机构信息

Department of Health Informatics, Faculty of Medicine, Health, and Life Sciences, Swansea University, Swansea, SA2 8PP, United Kingdom.

出版信息

Oxf Open Digit Health. 2024 Aug 3;2:oqae026. doi: 10.1093/oodh/oqae026. eCollection 2024.

Abstract

Pregnant women and new mothers within 1 year after delivery are at a high risk of depression, yet many do not get the help they need due to wide reasons heralding stigma, access, cost, time, and shortage of human resources. Hence, compelling the exploration of alternate and potentially cost-effective means of delivering care, including the leverage of digital tools. This review aimed to evaluate the effectiveness of digital health interventions in reducing depressive symptoms among perinatal women. Literatures were sought from seven academic databases alongside the references of previous reviews. Included studies were all quantitative study types involving the use of digital health interventions for perinatal women not more than 1-year post-delivery. Standardized mean difference and standard error were used to perform random-effect model meta-analysis. Sensitivity and subgroup analyses were performed to determine certainty and modifiers of the findings, respectively. Forty-eight studies were included in this review with 28 studies used for meta-analyses. Numerous digital channels were identified; however, none specified the use of a digital health theory in its development. The digital health interventions showed a small positive significant effect over the controls (standardized mean difference = 0.29,  = 0.003,  = 34%), and this was significantly influenced by intervention delivery and facilitation modes, time of initiation of the intervention, and period covered by the intervention. Although digital health interventions may hold some potential for perinatal depression, scaling the interventions may be challenging sequel to overlooked influences from the interactions within the human-computer-society complex.

摘要

孕妇和产后1年内的新妈妈患抑郁症的风险很高,但由于耻辱感、可及性、成本、时间和人力资源短缺等多种原因,许多人没有得到他们所需的帮助。因此,有必要探索替代的、可能具有成本效益的护理提供方式,包括利用数字工具。本综述旨在评估数字健康干预措施在减轻围产期妇女抑郁症状方面的有效性。我们从七个学术数据库以及先前综述的参考文献中查找文献。纳入的研究均为定量研究类型,涉及对产后不超过1年的围产期妇女使用数字健康干预措施。使用标准化均值差和标准误差进行随机效应模型荟萃分析。分别进行敏感性分析和亚组分析以确定研究结果的确定性和影响因素。本综述纳入了48项研究,其中28项研究用于荟萃分析。确定了众多数字渠道;然而,没有一项在其开发过程中明确使用数字健康理论。数字健康干预措施相对于对照组显示出小的正向显著效果(标准化均值差 = 0.29,P = 0.003,I² = 34%),并且这受到干预实施和促进模式、干预开始时间以及干预涵盖的时间段的显著影响。尽管数字健康干预措施可能对围产期抑郁症具有一定潜力,但由于人机社会复合体内部相互作用产生的被忽视的影响,扩大这些干预措施的规模可能具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c82a/11998592/1ef594e19ec2/oqae026f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验