Suppr超能文献

基于挥发性有机化合物分析的可解释深度学习预测海带地理来源

Explainable Deep Learning to Predict Kelp Geographical Origin from Volatile Organic Compound Analysis.

作者信息

Kang Xuming, Tan Zhijun, Zhao Yanfang, Yao Lin, Sheng Xiaofeng, Guo Yingying

机构信息

Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

出版信息

Foods. 2025 Apr 4;14(7):1269. doi: 10.3390/foods14071269.

Abstract

In addition to its flavor and nutritional value, the origin of kelp has become a crucial factor influencing consumer choices. Nevertheless, research on kelp's origin traceability by volatile organic compound (VOC) analysis is lacking, and the application of deep learning in this field remains scarce due to its black-box nature. To address this gap, we attempted to identify the origin of kelp by analyzing its VOCs in conjunction with explainable deep learning. In this work, we identified 115 distinct VOCs in kelp samples using gas chromatography coupled with ion mobility spectroscopy (GC-IMS), of which 68 categories were discernible. Consequently, we developed a comprehensible one-dimensional convolutional neural network (1D-CNN) model that incorporated 107 VOCs exhibiting significant regional disparities ( < 0.05). The model successfully discerns the origin of kelp, achieving perfect metrics across accuracy (100%), precision (100%), recall (100%), F1 score (100%), and AUC (1.0). SHapley Additive exPlanations (SHAP) analysis highlighted the impact of features such as 1-Octen-3-ol-M, (+)-limonene, allyl sulfide-D, 1-hydroxy-2-propanone-D, and ()-2-hexen-1-al-M on the model output. This research provides deeper insights into how critical product features correlate with specific geographic information, which in turn boosts consumer trust and promotes practical utilization in actual settings.

摘要

除了其风味和营养价值外,海带的产地已成为影响消费者选择的关键因素。然而,通过挥发性有机化合物(VOC)分析对海带产地可追溯性的研究尚属空白,并且由于深度学习的黑箱性质,其在该领域的应用仍然很少。为了填补这一空白,我们尝试结合可解释的深度学习通过分析海带的挥发性有机化合物来确定其产地。在这项工作中,我们使用气相色谱-离子迁移谱联用技术(GC-IMS)在海带样品中鉴定出115种不同的挥发性有机化合物,其中68种类别是可辨别的。因此,我们开发了一个可理解的一维卷积神经网络(1D-CNN)模型,该模型纳入了107种表现出显著区域差异(<0.05)的挥发性有机化合物。该模型成功地辨别出海带的产地,在准确率(100%)、精确率(100%)、召回率(100%)、F1分数(100%)和AUC(1.0)方面均达到了完美的指标。SHapley 加性解释(SHAP)分析突出了1-辛烯-3-醇-M、(+)-柠檬烯、烯丙基硫醚-D、1-羟基-2-丙酮-D和()-2-己烯-1-醛-M等特征对模型输出的影响。这项研究为关键产品特征与特定地理信息之间的关联提供了更深入的见解,进而增强了消费者的信任并促进了在实际环境中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d676/11988594/088ea1e6d56f/foods-14-01269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验