Wang Haopu, Wang Zhen, Li Bingxuan, Sui Yutong, Wu Meng, Guo Zongliang, Ding Chong, Wang Yixiang, Fu Rongxin, Li Hang, Xie Huikai, Zhang Shuailong, Lu Yao
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China.
Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China.
ACS Nano. 2025 Apr 29;19(16):16032-16042. doi: 10.1021/acsnano.5c02632. Epub 2025 Apr 16.
The development of advanced intracellular delivery systems is essential for biopharmaceutical progress, particularly in drug delivery systems, genetic engineering, and cellular therapeutics. While nanovesicles show significant therapeutic potential, challenges remain due to cell membrane barriers and the limitations of endocytosis-mediated pathways. In this study, we introduce an efficient acoustofluidic delivery system that utilizes a gigahertz (GHz)-range bulk acoustic wave (BAW) resonator to generate spatiotemporally controlled acoustic streaming vortices. This system enables rapid (within 10 min) and highly efficient direct cytosolic delivery of nanovesicles by bypassing conventional endosomal entrapment pathways. It effectively delivers both synthetic drug carriers (doxorubicin-loaded small unilamellar vesicles, Dox-SUVs) and biologically active exosomes through GHz-driven hydrodynamic shear forces that induce transient membrane permeability while maintaining cellular viability (>91.5% at 300 mW). Key performances demonstrate 86.5% drug delivery efficiency for Dox-SUVs with near-complete nuclear accumulation, while exosome-mediated delivery exhibits 2.4-fold accelerated migration and 3-fold proliferation enhancement within 24 h. The system's capacity to modulate fluidic shear stresses via BAW power tuning (100-500 mW) allows precise control over membrane permeabilization kinetics and cargo flux. By overcoming endolysosomal sequestration through a noninvasive, physics-driven mechanism, this acoustofluidic approach expands opportunities for next-generation therapeutics, including macromolecular biologic delivery, genome editing, and exosome-mediated intercellular communication.
先进的细胞内递送系统的发展对于生物制药的进步至关重要,特别是在药物递送系统、基因工程和细胞治疗方面。虽然纳米囊泡显示出巨大的治疗潜力,但由于细胞膜屏障和内吞作用介导途径的局限性,挑战仍然存在。在本研究中,我们介绍了一种高效的声流体递送系统,该系统利用千兆赫兹(GHz)范围内的体声波(BAW)谐振器来产生时空可控的声流涡旋。该系统能够通过绕过传统的内体截留途径,在10分钟内快速且高效地将纳米囊泡直接递送至细胞质。它通过GHz驱动的流体动力剪切力有效地递送合成药物载体(载有多柔比星的小单层囊泡,Dox-SUVs)和具有生物活性的外泌体,这些剪切力在维持细胞活力(300 mW时>91.5%)的同时诱导瞬时膜通透性。关键性能表明,Dox-SUVs的药物递送效率为86.5%,且近乎完全核积累,而外泌体介导的递送在24小时内显示出2.4倍的迁移加速和3倍的增殖增强。该系统通过BAW功率调谐(100 - 500 mW)调节流体剪切应力的能力允许对膜通透性动力学和货物通量进行精确控制。通过一种非侵入性物理驱动机制克服内溶酶体隔离,这种声流体方法为下一代治疗开辟了机会,包括大分子生物递送、基因组编辑和外泌体介导的细胞间通信。